首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Land use data are among the inputs used to determine dry deposition velocities for photochemical grid models such as the Comprehensive Air Quality Model with extensions (CAMx) that is currently used for attainment demonstrations and air quality planning by the state of Texas. The sensitivity of dry deposition and O3 mixing ratios to land use classification was investigated by comparing predictions based on default U.S. Geological Survey (USGS) land use data to predictions based on recently compiled land use data that were collected to improve biogenic emissions estimates. Dry deposition of O3 decreased throughout much of eastern Texas, especially in urban areas, with the new land use data. Predicted 1-hr averaged O3 mixing ratios with the new land use data were as much as 11 ppbv greater and 6 ppbv less than predictions based on USGS land use data during the late afternoon. In addition, the area with peak O3 mixing ratios in excess of 100 ppbv increased significantly in urban areas when deposition velocities were calculated based on the new land use data. Finally, more detailed data on land use within urban areas resulted in peak changes in O3 mixing ratios of approximately 2 ppbv. These results indicate the importance of establishing accurate, internally consistent land use data for photochemical modeling in urban areas in Texas. They also indicate the need for field validation of deposition rates in areas experiencing changing land use patterns, such as during urban reforestation programs or residential and commercial development.  相似文献   

2.
Recent evidence has demonstrated that chlorine radical chemistry can enhance tropospheric volatile organic compound oxidation and has the potential to enhance ozone formation in urban areas. In order to investigate the regional impacts of chlorine chemistry in southeastern Texas, preliminary estimates of atmospheric releases of atomic chlorine precursors from industrial point sources, cooling towers, water and wastewater treatment, swimming pools, tap water, reactions of chlorides in sea salt aerosols, and reactions of chlorinated organics were developed. To assess the potential implications of these estimated emissions on urban ozone formation, a series of photochemical modeling studies was conducted to examine the spatial and temporal sensitivity of ozone and a unique marker species for chlorine chemistry, 1-Chloro-3-methyl-3-butene-2-one (CMBO), to molecular chlorine emissions estimates. Based on current estimates of molecular chlorine emissions in southeastern Texas, chlorine chemistry has the potential to enhance ozone mixing ratios by up to 11–16 ppbv. Impacts varied temporally, with emissions from cooling towers primarily responsible for a morning enhancement in ozone mixing ratios and emissions from residential swimming pools for an afternoon enhancement. Maximum enhancement in CMBO mixing ratios ranged from 59 to 69 pptv.  相似文献   

3.
Measurements of O3, NO, NO2, and NOy mixing ratios were carried out at a station-Dinghushan in Guangdong province of China from Oct. 18th, 2008 to Nov. 7th, 2008. This research shows that under conditions of a strong subtropical high (temperature high, relative humidity low), on Oct. 29th, 2008 the Dinghushan station observed severe photochemical pollution. The Maximum hour average concentration of O3 reached 128 ppbv, and the serious photochemical pollution is caused by superposition of local photochemical reaction and regional transport. The observation that NOx ozone production efficiency (OPE) values for high O3 pollution on Oct. 29–30th, 2008 were 10.5 and 15, which were more than the values of the city source region and lower than that of the surrounding clean areas. It means the sensitivity of O3 generated was transitioning from VOCs limited condition to NOx-limited regime. By applying a Smog Production Model, the results show that the extent of reaction values less than 0.6 were occurred on 17 days during campaign, and 13 days for the extents of reactions more than 0.6. However, there were no data with values over 0.8, which indicates that the observation station represent a VOCs sensitive system during campaign. Analysis of the extents of reactions and wind data show that the pollution is mostly subject to a southeasterly airflow influence.  相似文献   

4.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

5.
Knowledge on atmospheric abundance of peroxyacetyl nitrate (PAN) is important in assessing the severity of photochemical pollution, and for understanding chemical transformation of reactive odd nitrogen and its impact on the budget of tropospheric ozone (O3). In summer 2006, continuous measurements of PAN were made using an automatic GC–ECD analyzer with an on-line calibrator at a suburban site of Lanzhou (LZ) and a remote site of Mt. Waliguan (WLG) in western China, with concurrent measurements of O3, total reactive nitrogen (NOy) and carbon monoxide (CO). At LZ, several photochemical episodes were observed during the study, and the average mixing ratio of PAN (plus or minus standard deviation) was 0.76 (±0.89) ppbv with the maximum value of 9.13 ppbv, compared to an average value of 0.44 (±0.16) ppbv at remote WLG. The PAN mixing ratios in LZ exhibited strong diurnal variations with a maximum at noon, while enhanced concentrations of PAN were observed in the evening and a minimum in the afternoon at WLG. The daily O3 and PAN concentration maxima showed a strong correlation (r2 = 0.91) in LZ, with a regression slope (PAN/O3) of 0.091 ppbv ppbv?1. At WLG, six well-identified pollution plumes (lasting 2–8 h) were observed with elevated concentrations of PAN (and other trace gases), and analysis of backward particle release simulation shows that the high-PAN events at WLG were mostly associated with the transport of air masses that had passed over LZ.  相似文献   

6.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

7.
The observed ranges in nonmethane organic compound (NMOC) concentrations, NMOC composition and nitrogen oxides (NOX) concentrations have been evaluated for urban and nonurban areas at ground level and aloft of the contiguous United States. The ranges in NMOC to NOX ratios also are considered. The NMOC composition consistently shifts towards less reactive compounds, especially the alkanes, in air parcels over nonurban areas compared to the NMOC composition near ground level within urban areas. The values for the NMOC to NOX ratios, 1.2 to 4.2, in air aloft over nonurban areas are lower than in air at ground level urban sites, ≥8, and much lower than in air at ground level nonurban sites, ≥20.

The layers of air aloft over a number of nonurban areas of the United States tend to accumulate NOX emissions from the tall stacks of large fossil fuel power plants located at nonurban sites. During the night into the morning hours, the air aloft is isolated from any fresh NMOC emissions predominately coming from near surface sources. Conversely, during this extended period of restricted vertical mixing, air near the surface accumulates NMOC emissions while this air is isolated from the major NOX sources emitting aloft. These differences in the distribution of NMOC and NOX sources appear to account for the much larger NMOC to NOX ratios reported near ground level compared to aloft over nonurban areas.

Two types of experimental results are consistent with these conclusions: (1) observed increases in surface rural NOX concentrations during the morning hours during which the mixing depth increases to reach the altitude at which NOX from the stacks of fossil fuel power plants is being transported downwind; (2) high correlations of total nitrate at rural locations with Se, which is a tracer for coal-fired power plant NOX emissions.

The implications of these conclusions from the standpoint of air quality strategies are suggested by use of appropriate scenarios applied to both urban and regional scale photochemical air quality models. The predictions from urban model scenarios with NMOC to NOX ratios up to 20 are that NOX control will result in the need for the control of more NMOC emissions than necessary in the absence of NOX control, in order to meet the O3 standard. On a regional scale, control of NOX emissions from fossil fuel power plants has little overall effect regionally but does result on a more local scale in both small decreases and increases in O3 concentrations compared to the baseline scenario without NOX control. The regional modeling results obtained to date suggest that NOX control may be effective in reducing O3 concentrations only for a very limited set of conditions in rural areas.  相似文献   

8.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

9.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

10.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

11.
The combined action of urbanization (change in land use) and increase in vehicular emissions intensifies the urban heat island (UHI) effect in many cities in the developed countries. The urban warming (UHI) enhances heat-stress-related diseases and ozone (O3) levels due to a photochemical reaction. Even though UHI intensity depends on wind speed, wind direction, and solar flux, the thermodynamic properties of surface materials can accelerate the temperature profiles at the local scale. This mechanism modifies the atmospheric boundary layer (ABL) structure and mixing height in urban regions. These changes further deteriorate the local air quality. In this work, an attempt has been made to understand the interrelationship between air pollution and UHI intensity at selected urban areas located at tropical environment. The characteristics of ambient temperature profiles associated with land use changes in the different microenvironments of Chennai city were simulated using the Envi-Met model. The simulated surface 24-hr average air temperatures (11 m above the ground) for urban background and commercial and residential sites were found to be 30.81 ± 2.06, 31.51 ± 1.87, and 31.33 ± 2.1ºC, respectively. The diurnal variation of UHI intensity was determined by comparing the daytime average air temperatures to the diurnal air temperature for different wind velocity conditions. From the model simulations, we found that wind speed of 0.2 to 5 m/sec aggravates the UHI intensity. Further, the diurnal variation of mixing height was also estimated at the study locations. The estimated lowest mixing height at the residential area was found to be 60 m in the middle of night. During the same period, highest ozone (O3) concentrations were also recorded at the continuous ambient air quality monitoring station (CAAQMS) located at the residential area.

Implications: An attempt has made to study the diurnal variation of secondary pollution levels in different study regions. This paper focuses mainly on the UHI intensity variations with respect to percentage of land use pattern change in Chennai city, India. The study simulated the area-based land use pattern with local mixing height variations. The relationship between UHI intensity and mixing height provides variations on local air quality.  相似文献   


12.
Nitryl Chloride (ClNO2) mixing ratios above 1 ppbv have been measured off the coast of Southeast Texas. ClNO2 formation, the result of heterogeneous N2O5 uptake on chloride-containing aerosols, has a significant impact on oxidant formation for the Houston area. This work reports on the modeling of ClNO2 formation and describes the sensitivity of ClNO2 formation to key parameters. Model sensitivity analyses found that: (1) Chloride availability limits the formation of nitryl chloride at ground level but not aloft; (2) When excess particulate chloride was assumed to be present at ground level through sea salt, ClNO2 concentrations increased in some locations by a factor of 13, as compared to cases where sea salt chloride was assumed to be limited; (3) Inland formation of ClNO2 seems feasible based on chloride availability and could have a large impact on total ClNO2 formed in the region; and (4) ClNO2 formation is quite sensitive to the assumed yield of ClNO2 from N2O5 uptake. These results demonstrate that there is a need for further field studies to better understand the geographic extent of ClNO2 formation and the atmospheric conditions which control partitioning of chloride into the particle phase. In addition, this work examined the role of ClNO2 in the cycling of chlorine between chloride and reactive chlorine radicals. The modeling indicated that the majority of reactive chlorine in Texas along the Gulf coast is cycled through ClNO2, demonstrating the importance of including ClNO2 into photochemical models for this region.  相似文献   

13.
Determining the destructions of both ozone and odd oxygen, Ox, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of Ox can also be determined simultaneously. The method is based on O3 and NO2 profiles and their surface measurements. Linkages between the dry deposition velocities of O3 and NO2 and between the dry deposition loss of Ox and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O3 dry deposition velocities from 0.13 to 0.19 cm s?1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of Ox, dry deposition of NO2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O3 and Ox in a polluted environment.  相似文献   

14.
The sensitivity of biogenic emission estimates and air quality model predictions to the characterization of land use/land cover (LULC) in southeastern Texas was examined using the Global Biosphere Emissions and Interactions System (GloBEIS) and the Comprehensive Air Quality Model with extensions (CAMx). A LULC database was recently developed for the region based on source imagery collected by the Landsat 7 Enhanced Thematic Mapper-Plus sensor between 1999 and 2003, and field data for land cover classification, species identification and quantification of biomass densities.  Biogenic emissions estimated from the new LULC data set showed good general agreement in their spatial distribution, but were approximately 40% lower than emissions from the LULC data set currently used by the State of Texas, primarily because of differences in the biomass estimates of key species such as Quercus. Predicted ozone mixing ratios using the biogenic emissions produced from the new LULC data set were as much as 26 ppb lower in some areas on some days, depending on meteorological conditions. Satellite data and image classification techniques provide useful tools for mapping and monitoring changes in LULC. However, field validation is necessary to link species and biomass densities to the classification system used for accurate biogenic emissions estimates, especially in areas such as riparian corridors that contain dense spatial coverage of key species.  相似文献   

15.
We report the first measurements of the mixing ratios of acetic (CH3COOH) and formic (HCOOH) acids in the air filling the pore spaces of the snowpacks (firn air) at Summit, Greenland and South Pole. Both monocarboxylic acids were present at levels well above 1 ppbv throughout the upper 35 cm of the snowpack at Summit. Maximum mixing ratios in Summit firn air reached nearly 8 ppbv CH3COOH and 6 ppbv HCOOH. At South Pole the mixing ratios of these acids in the top 35 cm of firn air were also generally >1 ppbv, though their maximums barely exceeded 2.5 ppbv of CH3COOH and 2.0 ppbv of HCOOH. Mixing ratios of the monocarboxylic acids in firn air did not consistently respond to diel and experimental (fast) variations in light intensity, unlike the case for N oxides in the same experiments. Air-to-snow fluxes of CH3COOH and HCOOH apparently support high mixing ratios (means of (CH3COOH/HCOOH) 445/460 and 310/159 pptv at Summit and South Pole, respectively) in air just above the snow during the summer sampling seasons at these sites. We hypothesize that oxidation of carbonyls and alkenes (that are produced by photo- and OH-oxidation of ubiquitous organic compounds) within the snowpack is the source of the monocarboxylic acids.  相似文献   

16.
Measurements of the dry deposition velocity of O3 to material samples of calcareous stone, concrete and wood at varying humidity of the air, were performed in a deposition chamber. Equilibrium surface deposition velocities were found for various humidity values by fitting a model to the time-dependent deposition data. A deposition velocity-humidity model was derived giving three separate rate constants for the surface deposition velocities, i.e. on the dry surface, on the first mono-layer of adsorbed water and on additional surface water. The variation in the dry air equilibrium surface deposition velocities among the samples correlated with variations in effective areas, with larger effective areas giving higher measured deposition velocities. A minimum for the equilibrium surface deposition velocity was generally measured at an intermediate humidity close to the humidity found to correspond to one mono-layer of water molecules on the surfaces. At low air humidity the equilibrium surface deposition velocity of O3 was found to decrease as more adsorbed water prevented direct contact of the O3 molecules with the surface. This was partly compensated by an increase as more adsorbed water became available for reaction with O3. At high air humidity the equilibrium surface deposition velocity was found to increase as the mass of water on the surface increased. The deposition velocity on bulk de-ionised water at RH=90% was an order of magnitude lower than on the sample surfaces.  相似文献   

17.
The annual cycles of hydrogen peroxide (H2O2) and methylhydroperoxide (MHP) have been investigated at a remote site in Antarctica in order to study seasonal variations as well as chemical processes in the troposphere. The measurements have been performed from March 1997 to January 1998 and in February 1999 at the German Antarctic research station Neumayer which is located at 70°39′S, 8°15′W. The obtained time series for hydrogen peroxide and methylhydroperoxide in near-surface air represents the first all-year measurements in Antarctica and indicates clearly the occurrence of seasonal variations. During polar night mean values of 0.054±0.046 ppbv (range<0.03–0.11 ppbv) for hydrogen peroxide and 0.089±0.052 ppbv (range<0.05–0.14 ppbv) for methylhydroperoxide were detected. At the sunlit period higher Mixing ratios were found, 0.20±0.13 ppbv (range<0.03–0.91 ppbv) for hydrogen peroxide and 0.19±0.10 ppbv (range<0.05–0.89 ppbv) for methylhydroperoxide. Occasional long-range transport of air masses from mid-latitudes caused enhanced peroxide concentrations at polar night. During the period of stratospheric ozone depletion we observed peroxide mixing ratios comparable to typical winter levels.  相似文献   

18.
Estimates of short-term, regional-scale spatial distributions of ozone (O3) and hydrogen peroxide (H2O2) dry deposition over the northeast U.S. are presented. Dry deposition fluxes to surfaces are computed using a regional tropospheric chemistry model with deposition velocities which vary with local meteorology, land type, insolation, seasonal factors and surface wetness. A compilation of O3 surface resistances is presented based on a survey of O3 dry deposition measurements. The surface resistance for H2O2 is assumed to be small under most conditions, causing H2O2 to dry deposit at a rate which is frequently limited by surface-layer turbulence. Regional patterns of dry deposition velocities for these oxidants over the northeast U.S. are computed using landuse data and meteorological information predicted using a mesoscale meteorology model. Domain-averaged O3 deposition velocities during a spring period reach a mid-day peak of 0.7–0.8 cm s−1 and drop to 0.1–0.2 cm s−1 at night. Domain-averaged H2O2 deposition velocities at a height of approximately 80 m are predicted to reach a mid-day peak of 1.6–2.0cm s−1, and fall to 0.6–0.9 cm s−1 at night. Time-averaged surface-layer H2O2 concentrations show a latitude dependence, with higher concentrations in the south. H2O2 concentrations are significantly reduced due to efficient wet removal and chemical destruction during the passage of a cyclonic frontal system. In contrast, O3 concentrations are predicted to rise during the passage of a frontal system due to efficient vertical exchange of midtropospheric air into the boundary layer during convective conditions, followed by synoptic-scale subsidence occurring in the high pressure airmass following a cyclone. Maximum O3 deposition during this 3-day springtime period occurs in polluted agricultural areas. In contrast, H2O2 dry deposition exhibits a latitude dependence with maximum 3-day accumulations occurring in the south. Domain-averaged mid-day deposition rates for O3 and H2O2 were 45–50 μmol m−2 h−1 and 4–5 μmol m−2 h−1. At night, deposition rates were approximately 5–10 μmol m−2 h−1 and 1.5–2.5 μmol m−2 h−1 for O3 and H2O2. These model results show that regional patterns of oxidant dry deposition are strongly influenced by oxidant concentrations, atmospheric stability, surface roughness and numerous other surface and meteorological factors. Each of these factors must be well-characterized before regional patterns of biological damage associated with oxidant dry deposition can be quantified.  相似文献   

19.
Mixing ratios of carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, halocarbons and alkyl nitrates (a total of 72 species) were determined for 78 whole air samples collected during the winter of 1998–1999 in Karachi, Pakistan. This is the first time that volatile organic compound (VOC) levels in Karachi have been extensively characterized. The overall air quality of the urban environment was determined using air samples collected at six locations throughout Karachi. Methane (6.3 ppmv) and ethane (93 ppbv) levels in Karachi were found to be much higher than in other cities that have been studied. The very high CH4 levels highlight the importance of natural gas leakage in Karachi. The leakage of liquefied petroleum gas contributes to elevated propane and butane levels in Karachi, although the propane and butane burdens were lower than in other cities (e.g., Mexico City, Santiago). High levels of benzene (0.3–19 ppbv) also appear to be of concern in the Karachi urban area. Vehicular emissions were characterized using air samples collected along the busiest thoroughfare of the city (M.A. Jinnah Road). Emissions from vehicular exhaust were found to be the main source of many of the hydrocarbons reported here. Significant levels of isoprene (1.2 ppbv) were detected at the roadside, and vehicular exhaust is estimated to account for about 20% of the isoprene observed in Karachi. 1,2-Dichloroethane, a lead scavenger added to leaded fuel, was also emitted by cars. The photochemical production of ozone (O3) was calculated for CO and the various VOCs using the Maximum Incremental Reactivity (MIR) scale. Based on the MIR scale, the leading contributors to O3 production in Karachi are ethene, CO, propene, m-xylene and toluene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号