首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The patented Carver-Greenfield (C-G) Process®, a combination of dehydration and solvent extraction treatment technologies, has a wide range of uses in separating hydrocarbon solvent-soluble hazardous organic contaminants (indigenous oil) from sludges, soils, and industrial wastes. As a result of this treatment, the products from a C-G Process facility are: ? Clean, dry solids which are typically suitable for disposal in nonhazardous landfills;

? Water which is treatable in an industrial or Publicly Owned Treatment Works (POTW) wastewater treatment facility;

? Extracted indigenous oil containing hydrocarbon soluble contaminants which may be recycled or reused or disposed of at less cost because its volume is smaller than the original waste feed.

The C-G Process was demonstrated on spent oily drilling fluids as part of the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. This paper summarizes the use of the C-G Process for economical treatment and minimization of hazardous refinery wastes, reviews the SITE program results, and describes extending the C-G Process technology to treatment of other wastes. Estimated treatment costs are presented.  相似文献   

2.
Abstract

The Superfund Innovative Technology Evaluation (SITE) Emerging Technology (ET) Program, authorized under the Superfund Amendments and Reauthorization Act (SARA) of 1986, implements the goal of the SITE Program to promote, accelerate the development of, and make commercially available alternative innovative treatment technologies for use at Superfund sites.

Under this program, the technical and economical feasibility of alternating current electrocoagulation (ACE) developed by Electro-Pure Systems, Inc., was evaluated for a two-year period. ACE is an electrochemical technology where highly-charged aluminum polyhydroxide species are introduced into aqueous media for the removal of suspended solids, oil droplets and soluble ionic pollutants. ACE can break stable aqueous colloidal suspensions of up to 10 percent total solids and stable emulsions containing up to 5 percent oil.

Major operating parameters have been defined for different classes of effluents based on experimental results using complex synthetic soil slurries and metals. Test results indicate that ACE produces aqueous and solid separations comparable to those produced by chemical flocculent additions, but with reduced filtration times and sludge volumes. The technology has application where removal of soluble and suspended pollutants from effluents is required, and in the recovery of fine-grained products from process streams. The technology, however, has not yet been demonstrated at full-scale for Superfund site remediation. The principal results of the SITE research program, and results of ACE treatment on some different classes of industrial effluents not part of the SITE Program, are summarized.  相似文献   

3.
The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five years. The ETP was established under the Superfund Amendments and Reauthorization Act (SARA) of 1986. The ETP complies with the goal of the SITE Program to promote, accelerate and make commercially available the development ofalternative /innovative treatment technologies for use at Superfund sites.

Technologies are submitted to the ETP through yearly solicitations for Preproposals. Following a technical review, chosen applicants are asked to submit a detailed project proposal and a cooperative agreement application that requires Developer I EPA cost sharing. EPA co-funds selected Developers for one to two years. Second-year funding requires documentation of significant progress during the first year. Facilities, equipment, data collection, performance and development are monitored throughout the project. The U. S. Department of Energy (DOE) and the U. S. Air Force (USAF) are participants in the ETP. DOE has co-funded ETP projects since 1990 and the USAF since 1991.

A primary goal of the ETP is to move developed technologies to the field-demonstration stage. Therefore, a developer may be considered for participation in the SITE Demonstration Program provided performance in the ETP indicates the technology is field-ready for demonstration and evaluation.

Six technology categories: biological, chemical, materials handling, physical, solidification/ stabilization and thermal, are presently in the ETP.

Technologies of primary interest to EPA are those that can treat complex mixtures of hazardous organic and inorganic contaminants and provide improved solids handling and/orpretreatment.

An account of the background and progress of the ETP’s first five years is presented in this paper. Technologies currently in the ETP, including those selected from the fifth (EOS) solicitation, are noted, and developers, along with EPA Project Managers, are listed.  相似文献   

4.
The Superfund Amendments and Reauthorization Act of 1986 (SARA) directed the U.S. Environmental Protection Agency (EPA) to establish an Alternative/Innovative Treatment Technology Research and Demonstration Program. The EPA’s Office of Solid Waste and Emergency Response and the Office of Research and Development established a program called the Superfund Innovative Technology Evaluation (SITE) Program to accelerate the development and use of innovative cleanup technologies at hazardous waste sites. The SITE Program comprises of five areas: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technologies Development Program, the Innovative Technologies Program, and the Technology Transfer Program.

This paper discusses the Emerging Technology Program (ETP) that supports the development of technologies that have been successfully tested at bench-scale level. Before a technology can be accepted into the Emerging Technology Program, sufficient data must be available to validate its basic concepts. The ETP enters into a co-funding effort with developers for a one- or two-year effort. Developers are responsible for contributing financial support and conducting the developmental research. After development and data collection, the technology’s performance is documented and a report is prepared, which may include recommendations for further developing the technology. If test results are encouraging, a technology may proceed with approval to a field demonstration.

The purpose of this article is to provide the reader with (1) an introduction to the Emerging Technology Program (2) an understanding of how the program operates (3) a summary of those technologies currently being tested and evaluated under the program and (4) information on how to apply to the program.  相似文献   

5.
Abstract

Superfund sites frequently contain both heavy metals and organic hazardous waste. If not properly controlled, the metals may be changed to a more leachable form and may also be emitted to the atmosphere via the exhaust stack. This paper documents a batch kiln R&D test program to solve these metal-related problems. It was performed under the U.S. EPA’s SITE (Superfund Innovative Technology Evaluation) Emerging Technology Program. Allis Mineral Systems has developed the Thermal Encapsulation Process. Metals with limits set by EPA’s TCLP (Toxicity Characteristic Leaching Procedure) test and BIF (boiler and industrial furnace) stack emission regulations, such as cadmium, chromium, and lead, are the initial target of this process. This process, while unproven in these areas, may also apply to mixed waste (EPA hazardous waste/low-level radioactive wastes) and may also benefit commercial hazardous waste or Superfund thermal treatment systems. The results of the SITE tests were positive: strong, durable nodules were produced with excellent crush strength and improved resistance to leaching. Feed preparation, particularly control of moisture content, was found to be a key element in initiation of agglomeration. A good correlation was found between decreasing TCLP metals leachate levels and increasing crush strength.  相似文献   

6.
7.
The Superfund Innovative Technology Evaluation (SITE) Program is now in its sixth year of demonstrating technologies applicable to Superfund sites. The SITE Program, conducted by the U.S. Environmental Protection Agency's Risk Reduction Engineering Laboratory, is intended to accelerate the use of new and innovative treatment processes as well as evaluate innovative measurement and monitoring techniques. Within the SITE Program, the Demonstration Program and the Emerging Technologies Program are responsible for innovative/alternative waste treatment technology development. Separate and parallel activities are progressing for development and evaluation of measuring and monitoring technologies as well as technology transfer operations.  相似文献   

8.
The Superfund Innovative Technology Evaluation (SITE) Program is now in its sixth year of demonstrating technologies applicable to Superfund sites. The SITE Program, conducted by the U.S. Environmental Protection Agency’s Risk Reduction Engineering Laboratory, is intended to accelerate the use of new and innovative treatment processes as well as evaluate innovative measurement and monitoring techniques. Within the SITE Program, the Demonstration Program and the Emerging Technologies Program are responsible for innovative/ alternative waste treatment technology development. Separate and parallel activities are progressing for development and evaluation of measuring and monitoring technologies as well as technology transfer operations.  相似文献   

9.
The Superfund Innovative Technology Evaluation (SITE) program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between U.S. EPA’s Office of Research and Development and Office of Solid Waste and Emergency Response. The program is designed to assist and encourage the development of waste treatment technologies that would contribute to more solutions to our hazardous waste problems.

Recently, EPA, through the SITE program, issued a work assignment to assess the “stateof- the-art” of electroklnetically enhanced contaminant removal from soils. Prior research efforts, both laboratory and field, have demonstrated that electroosmosis has the potential to be effective In facilitating the removal of certain types of hazardous wastes from soils. Particularly encouraging results have been achieved with inorganics in fine-grained soils where more traditional removal alternatives are less effective.

Although the results of various studies suggest that electrokinetics is a promising technology, further testing Is needed at both the laboratory and field levels to fully develop this technology for site remediation. A conceptual test program Is presented based on best available data which incorporates system design and operating parameters used in previous applications of this technology In the use of electrokinetics treatment as a remediation technique at hazardous waste sites.  相似文献   

10.
ABSTRACT

The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a “bottom-up” engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   

11.
Under the Superfund Innovative Technology Evaluation (SITE) Program, a technology developed by AWD Technologies, Inc. was demonstrated in September 1990. This paper presents the major results of the SITE demonstration of AWD Technologies’ AquaDetox®ISVE treatment system designed for simultaneous on-site treatment of contaminated groundwater and soil-gas. The groundwater and soil at the demonstration site were contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE). The AWD technology was evaluated on the basis of the removal efficiencies of TCE and PCE from the contaminated groundwater and soil-gas. The conclusions drawn from these evaluations are: (1) the system achieved removal efficiencies as high as 99.99percent for groundwater and 99.9 percent for soil-gas; (2) the effluent groundwater was in compliance with the regulatory discharge requirements of 5 fig/L each for TCE and PCE for all test runs; (3) the demonstrated 1,000 gpm system has an estimated capital cost of $4.3 million and annual operating and maintenance cost of approximately $820,000.  相似文献   

12.
Under the Superfund Innovative Technology Evaluation (SITE) Program, a technology developed by AWD Technologies, Inc. was demonstrated in September 1990. This paper presents the major results of the SITE demonstration of AWD Technologies' AquaDetox/SVE treatment system designed for simultaneous on-site treatment of contaminated groundwater and soil-gas. The groundwater and soil at the demonstration site were contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE). The AWD technology was evaluated on the basis of the removal efficiencies of TCE and PCE from the contaminated groundwater and soil-gas. The conclusions drawn from these evaluations are: (1) the system achieved removal efficiencies as high as 99.99 percent for groundwater and 99.9 percent for soil-gas; (2) the effluent groundwater was in compliance with the regulatory discharge requirements of 5 micrograms/L each for TCE and PCE for all test runs; (3) the demonstrated 1,000 gpm system has an estimated capital cost of $4.3 million and annual operating and maintenance cost of approximately $820,000.  相似文献   

13.
Abstract

Under a cooperative agreement with the U.S. Environmental Protection Agency's (USEPA) Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program, COGNIS, Inc. conducted bench-scale studies on the COGNIS TERRAMET® Lead Extraction Process. The process leaches, or extracts, lead from contaminated soil and consists of a lead leaching stage followed by recovery of the dissolved lead from the leachant. Prior to treatment, the soil is characterized, the type and extent of lead contamination is identified, and the soil is pretreated by physical separation methods to facilitate the extraction process. The physical pretreatment, for example, may include particle size separation to allow separate leaching of the sand and fines fractions and removal of larger lead particles by density separation techniques. As part of the SITE Program, COGNIS investigated seven different lead-contaminated soil samples in small bench-scale batch studies and three soils in larger bench-scale continuous-treatment studies. This bench-scale work led to the design, construction, and operation of a full-scale treatment plant by COGNIS at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, MN where lead and seven other heavy metals were extracted and recovered from over 20,000 tons of treated soil to meet cleanup criteria.  相似文献   

14.
Between September 5 and October 5,1989 a field demonstration of the NovaTerra, Inc. Detoxifier [formerly called Toxic Treatment (USA)] was performed by the U.S. EPA under the Superfund Innovative Technology Evaluation (SITE) program. The NovaTerra Detoxifier process injects steam and hot air directly into the ground to vaporize and strip volatile and semivolatile organics. Two augers loosen and homogenize the soil during the stripping process. The steam, hot air and organics are carried to the soil surface and collected for treatment.

The field demonstration was performed at the GATX Annex Terminal located at the Port of Los Angeles, San Pedro, California. Approximately 17 percent of the 5.2 acre site is contaminated with chlorinated solvents, plasticizers, coatings, adhesives and paint additives, and other miscellaneous chemicals from aboveground storage tanks and transfer operations to railroad cars.

The objectives of this SITE Demonstration were to determine the in situ soil concentrations before and after treatment, quantify process stream emissions (fugitive and sidestreams), determine process operating conditions, and determine if vertical migration of contaminants is occurring. Results from the SITE demonstration showed that a substantial amount of the VOCs were removed, about half the SVOCs were removed, there was very little fugitive air emissions from the operation, and what little downward migration occured (if any) was inconsequential.  相似文献   

15.
A cost estimating methodology has been applied to an emission point inventory to estimate the capital and operating costs of stack gas cleaning in the manufacturing sector of New York State. The study represents the first major attempt to estimate control costs on a source by source basis for a large region. The various control cost components are presented for each of the twenty manufacturing industry groups and the usefulness of the estimates for an abatement planning model is outlined.

In recent years a number of heroic efforts have been made to estimate the cost of air pollution abatement on a national or regional basis. Unfortunately, these studies have relied almost entirely upon emission factors, cost engineering functions, pilot plant operations, and average or ideal firms, because of the paucity of primary data.1-6

In the estimates of capital and operating costs presented below, an attempt has been made to improve on previous research by making extensive use of primary data. The data were taken from an emission inventory of over 20,000 sources of air contamination in New York State. A cost estimating methodology was applied to engineering parameters of existing control operations on a source by source basis. The results have been aggregated to the two-digit SIC level.  相似文献   

16.

The increasing concern about the environmental issue and its serious adverse effects on human health has made China’s industrial green transformation being a matter of public concern. In this study, a network slack-based measure (NSBM) was applied to explore China’s industrial green development level from the perspective of environmental welfare efficiency (EWE), considering not only the impact of industrial development on environment and economy, but also the impact on human well-being. Based on the data of 30 provincial administrative regions in China from 2004 to 2017, the comprehensive efficiency (CE) of China’s industrial sector was measured and decomposed. The results show that the industrial production efficiency (IPE) is much higher than the EWE, and the improvement of the EWE will be the key to realize the green transformation of China’s industry. On this basis, considering the effects of spatial interaction, the spatial Durbin model was established to analyze the driving factors of EWE. Finally, this research puts forward promotion path of industrial green development.

  相似文献   

17.
Abstract

About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are often defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog—induced primarily from traffic, but also from industrial activities, power generation, and solvents—has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to global climate change. Yet, with appropriate planning megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems.

This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. This review considers not only megacities, but also urban centers with somewhat smaller populations, for while each city—its problems, resources, and outlook—is unique, the need for a holistic approach to complex environmental problems is the same. There is no single strategy to reduce air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialogue is essential to effectively implement the regulations required to address air quality.  相似文献   

18.
The injection of dry alkaline compounds into the furnace or post-furnace regions of utility boilers to reduce SO2 is currently under development as a lower cost option to conventional flue gas desulfurization technology. Part I of this paper focused on the science and process development of the various dry sorbent technologies. Part II will address applications of these technologies, including SO2 removals in full-scale boilers, methodologies for designing sorbent injection systems, power plant impacts, process integration issues, and cost.

Because the dry technologies use the furnace and/or ducts as the chemical contactor, potential impacts on power plant operation and reliability are as critical in assessing the commercial applicability of each technology as SO2 removal and sorbent utilization. Consequently, the technical and economic feasibility of the various dry processes is highly site specific.  相似文献   

19.
Under the SITE Emerging Technology Program, the U.S. Environmental Protection Agency is seeking to foster the further development of technologies that have been successfully tested at bench-scale and are now ready for pilot-scale testing, prior to field- or full-scale demonstration. The goal is to ensure that a steady stream of permanent, cost-effective, technologies will be ready for demonstration in the field, thereby increasing the number of viable alternatives available for use in Superfund removal and remedial actions. Under this program, EPA can offer technology developers financial assistance of up to $150,000 per year, for up to two years. The program is in its second year with seven projects underway and eight more ready to start, pending completion of award actions. The Third Emerging Technology Program Solicitation is open to the receipt of new proposals from July 8,1989 through September 7,1989. The purpose of this article is to provide the reader with: (1) an introduction to the Emerging Technology Program; (2) an understanding of how the Program operates; (3) a summary of those technologies currently being tested and evaluated under the Program; and (4) information on how to apply to the Program.  相似文献   

20.
The U.S. Environmental Protection Agency (EPA), in cooperation with the Toronto Harbour Commissioners (THC), conducted a Superfund Innovative Technology Evaluation (SITE) demonstration of the THC Soil Recycle Treatment Train. The treatment train consists of three technologies operated in sequence: a soil wash process, a metals removal process, and a biological treatment process. The THC conducted an extensive demonstration of the treatment train at a 55 tons per day pilot plant in order to evaluate an approach for remediation of industrial/commercial sites that are situated in the Toronto Port Industrial District (PID). Three soils were processed during the THC demonstration. The EPA SITE demonstration project examined, in detail, soil processing from one of the sites being evaluated as part of the overall THC project. Contaminants included organic compounds and heavy metals. It has been estimated by THC that as much as 2,200,000 tons of soil from locations within the PID may require some form of treatment due to heavy metal and/or organic contamination that resulted from various industrial processing operations. The objective of the SITE demonstration was to evaluate the technical effectiveness of the process in relation to THC’s target criteria.

Gravel and sand that met the THC target criteria for medium to fine soil suitable for industrial/commercial sites was produced. The fine soil from the biological treatment process did not meet the target level of 2.4 ppm for benzo(a)pyrene. However, there was a significant reduction in polynuclear aromatic hydrocarbon (PAH) compounds. The metals removal process achieved reductions of greater than seventy percent for copper, lead, nickel, and zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号