首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
One of two topics explored is the limitations of the daily average in summarizing pollutant hourly profiles. The daily average of hourly measurements of air pollutant constituents provides continuity with previous studies using monitoring technology that only provided the daily average. However, other summary statistics are needed that make better use of all available information in 24-hr profiles. The daily average reflects the total daily dose, obscuring hourly resolution of the dose rate. Air pollutant exposures with comparable total daily doses may have very different effects when occurring at high levels over a few hours as opposed to low levels over a longer time. Alternative data-based choices for summary statistics are provided using principal component analysis to capture the exposure dose rate, while preserving ease of interpretation. This is demonstrated using the earliest hourly particle concentration data available for El Paso from archived records of particulate matter (PM)10. In this way, a significant association between evening PM10 exposures and nonaccidental daily mortality is found in El Paso from 1992 to 1995, otherwise missed using the daily average. Secondly, the nature and, hence, effects of particles in the ambient aerosol during El Paso sandstorms is believed different from that of particles present during still-air conditions resulting from atmospheric temperature inversions. To investigate this, wind speed (ws) is used as a surrogate variable to label PM10 exposures as Low-ws (primarily fine particles), High-ws (primarily coarse particles), or Mid-ws (a mixture of fine and coarse particles). A High-ws evening is significantly associated with a 10% lower risk of mortality on the succeeding third day, as compared with comparable exposures at Low- or Mid-ws. Although this analysis cannot be used to form firm conclusions because it uses a very small data set, it demonstrates the limitations of the daily average and suggests differential toxicity for different particle compositions.  相似文献   

2.
Lanzhou is one of the most air-polluted cities in China and in the world, and its primary air pollutant is particulate matter (PM). Different size particulate matter (TSP, PM10, PM2.5 and PM1.0) have different sources and affect the environment and human health differently, so it is very important to study the pollutant characteristics of different particles in order to deeply understand the pollution situation of Lanzhou city and establish reasonable preventive countermeasures. TSP, PM10, PM2.5 and PM1.0 concentrations were simultaneously measured in Lanzhou to detect the annual and diurnal variations of concentrations of PM with different sizes and possible causes. The main results are as follows: (1) The annual distribution of monthly average concentrations for coarse particles (TSP and PM10) is bimodal with the highest peak in April, which is different from the situation in other cities not affected by sand-dust events. However, the annual distribution for fine particles (PM2.5 and PM1.0) is unimodal with the peak in December. This difference between coarse and fine particles indicates that sand-dust events in spring carry much more coarse than fine particles to Lanzhou. This result is supported by the correlation between springtime wind speed and concentrations of PM with different sizes. (2) Under normal conditions (without dust intrusions), the diurnal distribution of coarse particle concentration in Lanzhou is bimodal. However, the distribution is trimodal during dust intrusions in April, with an extra peak in the afternoon. (3) In general, the highest concentration peaks of the diurnal variations for TSP, PM10, PM2.5 and PM1.0 occur at about the same time. However, there are obvious differences in the occurrence time of the minimum concentrations among different kinds of PM. The differences in the occurrence time of minima between coarse and fine particles are due to their different diffusion behaviors in the atmospheric boundary layer.  相似文献   

3.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

4.
Average 21st century concentrations of urban air pollutants linked to cardiorespiratory disease are not declining, and commonly exceed legal limits. Even below such limits, health effects are being observed and may be related to transient daytime peaks in pollutant concentrations. With this in mind, we analyse >52,000 hourly urban background readings of PM10 and pollutant gases throughout 2007 at a European town with legal annual average concentrations of common pollutants, but with a documented air pollution-related cardiorespiratory health problem, and demonstrate the hourly variations in PM10, SO2, NOx, CO and O3. Back-trajectory analysis was applied to track the arrival of exotic PM10 intrusions, the main controls on air pollutants were identified, and the typical hourly pattern on ambient concentrations during 2007 was profiled. Emphasis was placed on “worst case” data (>90th percentile), when health effects are likely to be greatest. The data show marked daytime variations in pollutants result from rush-hour traffic-related pollution spikes, midday industrial SO2 maxima, and afternoon O3 peaks. African dust intrusions enhance PM10 levels at whatever hour, whereas European PM incursions produce pronounced evening peaks due to their transport direction (across an industrial traffic corridor). Transient peak profiling moves us closer to the reality of personal outdoor exposure to inhalable pollutants in a given urban area. We argue that such an approach to monitoring data potentially offers more to air pollution health effect studies than using only 24 h or annual averages.  相似文献   

5.
Hourly average concentrations of PM10 and PM2.5 have been measured simultaneously at a site within Birmingham U.K. between October 1994 and October 1995. Comparison of PM10 and NOx data with two other sites in the same city shows comparable summer and winter mean concentrations and highly significant inter-site correlations for both hourly and daily mean data. Over a four-month period samples were also collected for chemical analysis of sulphate, nitrate, chloride, ammonium and elemental and organic carbon. Analysis of the data indicates a marked difference between summer and winter periods. In the winter months PM2.5 comprises about 80% of PM10 and is strongly correlated with NOx indicating the importance of road traffic as a source. In the summer months, coarse particles (PM10−PM2.5) account for almost 50% of PM10 and the influence of resuspended surface dusts and soils and of secondary particulate matter is evident. The chemical analysis data are also consistent with three sources dominating the PM10 composition: vehicle exhaust emissions, secondary ammonium salts and resuspended surface dusts. Coarse particles from resuspension showed a positive dependence on windspeed, whilst elemental carbon derived from road traffic exhibited a negative dependence.  相似文献   

6.
Particulate matter (PM) sources at four different monitoring sites in Alexandra, New Zealand, were investigated on an hourly timescale. Three of the sites were located on a horizontal transect, upwind, central, and downwind of the general katabatic flow pathway. The fourth monitoring site was located at the central site, but at a height of 26 m, using a knuckleboom, when wind conditions permitted. Average hourly PM10 (PM with an aerodynamic diameter <10 μm) concentrations in Alexandra showed slightly different diurnal profiles depending on the sampling site location. Each location did, however, feature a large evening peak and smaller morning peak in PM10 concentrations. The central site in Alexandra experienced the highest PM10 concentrations as a result of PM transport along a number of katabatic flow pathways. A significant difference in PM10 concentrations between the central and elevated sites indicated that a shallow inversion layer formed below the elevated site, limiting the vertical dispersion of pollutants. Four PM10 sources were identified at each of the sites: biomass combustion, vehicles, crustal matter, and marine aerosol. Biomass combustion was identified as the most significant source of PM10, contributing up to 91% of the measured PM10. Plots of the average hourly source contributions to each site revealed that biomass combustion was responsible for both the evening and morning peaks in PM10 concentrations observed at each of the sites, suggesting that Alexandra residents were relighting their fires when they rose in the morning. The identification of PM sources on an hourly timescale can have significant implications for air quality management.
Implications: Monitoring the sources of PM10 on an hourly timescale at multiple sites within an airshed provides extremely useful information for air quality management. Sources responsible for observed peaks in measured diurnal PM10 concentration profiles can be easily identified and targeted for reduction. Also, hourly PM10 sampling can provide crucial information on the role meteorology plays in the development of elevated PM10 concentrations.  相似文献   

7.
ABSTRACT

We have studied the possible association of daily mortality with ambient pollutant concentrations (PM10, CO, O3, SO2, NO2, and fine [PM2 5] and coarse PM) and weather variables (temperature and dew point) in the Pittsburgh, PA, area for two age groups—less than 75, and 75 and over—for the 3-year period of 1989-1991. Correlation functions among pollutant concentrations show important seasonal dependence, and this fact necessitates the use of seasonal models to better identify the link between ambient pollutant concentrations and daily mortality. An analysis of the seasonal model results for the younger-age group reveals significant multicollinearity problems among the highly correlated concentrations of PM10, CO, and NO2 (and O3 in spring and summer), and calls into question the rather consistent results of the single- and multi-pollutant non-seasonal models that show a significant positive association between PM10 and daily mortality. For the older-age group, dew point consistently shows a significant association with daily mortality in all models. Collinearity problems appear in the multi-pollutant seasonal and non-seasonal models such that a significant, positive PM10 coefficient is accompanied by a significant, negative coefficient of another ambient pollutant, and the identity of this other pollutant changes with season. The PM25 data set is half that of PM10. Identical-model runs for both data sets reveal instability in the pollutant coefficients, especially for the younger age group. The concern for the instability of the pollutant coefficients due to a small signal-to-noise ratio makes it impossible to ascertain credibly the relative associations of the fine- and coarse-particle modes with daily mortality. In this connection, we call for caution in the interpretation of model results for causal inference when the models use fully or partially estimated PM values to fill large data gaps.  相似文献   

8.
ABSTRACT

The Fresno Supersite intends to 1) evaluate non-routine monitoring methods, establishing their comparability with existing methods and their applicability to air quality planning, exposure assessment, and health effects studies; 2) provide a better understanding of aerosol characteristics, behavior, and sources to assist regulatory agencies in developing standards and strategies that protect public health; and 3) support studies that evaluate relationships between aerosol properties, co-factors, and observed health end-points. Supersite observables include in-situ, continuous, short-duration measurements of 1) PM2.5, PM10, and coarse (PM10 minus PM2.5) mass; 2) PM2.5 SO4 -2, NO3 -, carbon, light absorption, and light extinction; 3) numbers of particles in discrete size bins ranging from 0.01 to ~10μm; 4) criteria pollutant gases (O3, CO, NOx); 5) reactive gases (NO2, NOy, HNO3, peroxyacetyl nitrate [PAN], NH3); and 6) single particle characterization by time-of-flight mass spectrometry. Field sampling and laboratory analysis are applied for gaseous and particulate organic compounds (light hydrocarbons, heavy hydrocarbons, carbonyls, polycyclic aromatic hydrocarbons [PAH], and other semi-volatiles), and PM2.5 mass, elements, ions, and carbon. Observables common to other Supersites are 1) daily PM2.5 24-hr average mass with Federal Reference Method (FRM) samplers; 2) continuous hourly and 5-min average PM2.5 and PM10 mass with beta attenuation monitors (BAM) and tapered element oscillating microbalances (TEOM); 3) PM2.5 chemical specia-tion with a U.S. Environmental Protection Agency (EPA) speciation monitor and protocol; 4) coarse particle mass by dichotomous sampler and difference between PM10 and PM2.5 BAM and TEOM measurements; 5) coarse particle chemical composition; and 6) high sensitivity and time resolution scalar and vector wind speed, wind direction, temperature, relative humidity, barometric pressure, and solar radiation. The Fresno Supersite is coordinated with health and toxicological studies that will use these data in establishing relationships with asthma, other respiratory disease, and cardiovascular changes in human and animal subjects.  相似文献   

9.
Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM2.5 and BC were monitored continuously for 4–6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2–3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.  相似文献   

10.
11.
The number of ultrafine particles may be a more health relevant characteristic of ambient particulate matter than the conventionally measured mass. Epidemiological time series studies typically use a central site to characterize human exposure to outdoor air pollution. There is currently very limited information how well measurements at a central site reflect temporal and spatial variation across an urban area for particle number concentrations (PNC).The main objective of the study was to assess the spatial variation of PNC compared to the mass concentration of particles with diameter less than 10 or 2.5 μm (PM10 and PM2.5).Continuous measurements of PM10, PM2.5, PNC and soot concentrations were conducted at a central site during October 2002–March 2004 in four cities spread over Europe (Amsterdam, Athens, Birmingham and Helsinki). The same measurements were conducted directly outside 152 homes spread over the metropolitan areas. Each home was monitored during 1 week. We assessed the temporal correlation and the variability of absolute concentrations.For all particle indices, including particle number, temporal correlation of 24-h average concentrations was high. The median correlation for PNC per city ranged between 0.67 and 0.76. For PM2.5 median correlation ranged between 0.79 and 0.98. The median correlation for hourly average PNC was lower (range 0.56–0.66). Absolute concentration levels varied substantially more within cities for PNC and coarse particles than for PM2.5. Measurements at the central site reflected the temporal variation of 24-h average concentrations for all particle indices at the selected homes across the urban area. A central site could not assess absolute concentrations across the urban areas for particle number.  相似文献   

12.
This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM2.5), whereas the conversion of nitrogen occurs in approximately equal quantities of PM2.5 and coarse particles (PM2.510). The results show a direct relationship for PM2.5 between the modeling results with SOR and NOR. The high PM2.5 SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM2.5–10 contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5–10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively.  相似文献   

13.
ABSTRACT

Three years of hourly averaged PM10 (particulate matter less than 10 Lrm in diameter) tapered element oscillating microbalance (TEOM) data from 10 sites in the large coastal valley incorporating Greater Vancouver were used to investigate the spatiotemporal dimensions and air pollution meteorology of particulate pollution. During the period studied, the provincial “acceptable” objective daily concentration of 50 μg m-3 was exceeded at 7 of the 10 sites. The highest annual, seasonal, and maximum hourly concentrations were recorded at Abbotsford in the central valley. Mean seasonal PM10 concentrations were highest in the wintertime in the western Lower Fraser Valley (LFV) and in the summertime at the central and eastern valley locations. Within the network, interstation correlations of daily average concentrations exceed 0.8 at interstation distances less than 20 km and decrease thereafter. For daily maximum concentrations (hourly), interstation correlations decrease sharply with distance. Meteorological conditions responsible for elevated par-ticulate concentrations in the LFV are associated with (1) short periods (1- to 3-hr duration) of reduced dispersion during summer nights at sites close to primary sources, (2) summer anticyclonic conditions when photochemical pollutant concentrations build up across the entire valley, and (3) occasional wintertime “gap wind” events in the eastern valley.  相似文献   

14.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

15.
16.
Abstract

The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998–2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

17.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

18.
Day and night period sampling programs were carried out using a versatile air pollutant system to collect fine particulate matter (PM2.5) and coarse particulate matter (PM2.5–10) simultaneously at a traffic junction that is only 60 m from HungKuang University located in Central Taiwan. Therefore, HungKuang University is regarded as the traffic sampling site in this study. Similar measurements were carried out in a previous 2013 study by Fang and colleagues during October 2012 to November 2012. Determination of metallic element composition of fine and coarse particulates collected during the day and the night was accomplished with inductively coupled plasma atomic emission spectrometry (ICP-AES). The results indicated that there were no significant differences in composition of metallic elements Zn, Cu, Cr, Mn, Fe, Pb, and Cd in either coarse or fine particles for both day and night sampling periods. The statistical results indicated no significant differences for metallic elements in the PM2.5–10 particulates for day and night sampling periods. Also, no significant differences were noted for metallic elements in the PM2.5 particulates for day and night sampling periods at this traffic sampling site. The proposed reason is the limited sampling period employed in this study. Another potential reason is the presence of traffic that runs heavily both day and night being a major contributor to the ambient air metallic pollutants in this region.  相似文献   

19.
In recent years, many air quality monitoring programs have favored measurement of particles less than 2.5 µm (PM2.5) over particles less than 10 µm (PM10) in light of evidence that health impacts are mostly from the fine fraction. However, the coarse fraction (PM10-2.5) may have independent health impacts that support continued measurement of PM10 in some areas, such as those affected by road dust. The objective of this study was to evaluate the associations between different measures of daily PM exposure and two daily indicators of population health in seven communities in British Columbia, Canada, where road dust is an ongoing concern. The measures of exposure were PM10, PM2.5, PM10-2.5, PM2.5 adjusted for PM10-2.5, and PM10-2.5 adjusted for PM2.5. The indicators of population health were dispensations of the respiratory reliever medication salbutamol sulfate and nonaccidental mortality. This study followed a time-series design using Poisson regression over a 2003–2015 study period, with analyses stratified by three seasons: residential woodsmoke in winter; road dust in spring; and wildfire smoke in summer. A random-effects meta-analysis was conducted to establish a pooled estimate. Overall, an interquartile range increase in daily PM10-2.5 was associated with a 3.6% [1.6, 5.6] increase in nonaccidental mortality during the road dust season, which was reduced to 3.1% [0.8, 5.4] after adjustment for PM2.5. The adjusted coarse fraction had no effect on salbutamol dispensations in any season. However, an interquartile range increase in PM2.5 was associated with a 2.7% [2.0, 3.4] increase in dispensations during the wildfire season. These analyses suggest different impacts of different PM fractions by season, with a robust association between the coarse fraction and nonaccidental mortality in communities and periods affected by road dust. We recommend that PM10 monitoring networks be maintained in these communities to provide feedback for future dust mitigation programs.

Implications: There was a significant association between daily concentrations of the coarse fraction and nonaccidental mortality during the road dust season, even after adjustment for the fine fraction. The acute and chronic health effects associated with exposure to the coarse fraction remain unclear, which supports the maintenance of PM10 monitoring networks to allow for further research in communities affected by sources such as road dust.  相似文献   


20.
The ambient air of the Monterrey Metropolitan Area (MMA) in Mexico frequently exhibits high levels of PM10 and PM2.5. However, no information exists on the chemical composition of coarse particles (PMc = PM10 – PM2.5). A monitoring campaign was conducted during the summer of 2015, during which 24-hr average PM10 and PM2.5 samples were collected using high-volume filter-based instruments to chemically characterize the fine and coarse fractions of the PM. The collected samples were analyzed for anions (Cl, NO3, SO42–), cations (Na+, NH4+, K+), organic carbon (OC), elemental carbon (EC), and 35 trace elements (Al to Pb). During the campaign, the average PM2.5 concentrations did not showed significance differences among sampling sites, whereas the average PMc concentrations did. In addition, the PMc accounted for 75% to 90% of the PM10 across the MMA. The average contribution of the main chemical species to the total mass indicated that geological material including Ca, Fe, Si, and Al (45%) and sulfates (11%) were the principal components of PMc, whereas sulfates (54%) and organic matter (30%) were the principal components of PM2.5. The OC-to-EC ratio for PMc ranged from 4.4 to 13, whereas that for PM2.5 ranged from 3.97 to 6.08. The estimated contribution of Secondary Organic Aerosol (SOA) to the total mass of organic aerosol in PM2.5 was estimated to be around 70–80%; for PMc, the contribution was lower (20–50%). The enrichment factors (EF) for most of the trace elements exhibited high values for PM2.5 (EF: 10–1000) and low values for PMc (EF: 1–10). Given the high contribution of crustal elements and the high values of EFs, PMc is heavily influenced by soil resuspension and PM2.5 by anthropogenic sources. Finally, the airborne particles found in the eastern region of the MMA were chemically distinguishable from those in its western region.

Implications: Concentration and chemical composition patterns of fine and coarse particles can vary significantly across the MMA. Public policy solutions have to be built based on these observations. There is clear evidence that the spatial variations in the MMA’s coarse fractions are influenced by clearly recognizable primary emission sources, while fine particles exhibit a homogeneous concentration field and a clear spatial pattern of increasing secondary contributions. Important reductions in the coarse fraction can come from primary particles’ emission controls; for fine particles, control of gaseous precursors—particularly sulfur-containing species and organic compounds—should be considered.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号