首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

2.
Abstract

Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings.  相似文献   

3.
Distinguishing between vapor intrusion and indoor sources of volatile organic compounds (VOCs) is a significant challenge in conventional vapor intrusion assessments. For this research project, the authors developed a step-by-step protocol to streamline building-specific investigations by using on-site gas chromatography/mass spectrometry (GC/MS) analysis and building pressure manipulation to determine the source of VOCs in indoor air during a 1-day field investigation. Protocol validation included implementation in industrial buildings and testing alongside conventional methods. The new protocol compares favorably to conventional approaches, yielding more definitive results in less time. This article presents three case studies which illustrate application of the protocol.  相似文献   

4.
Abstract

A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE ≤2,600,000 parts per billion by volume (ppbv) and trichloroethylene ≤170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10-6 based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10-5 based on average values.  相似文献   

5.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

6.
We conducted a comparative study on the indoor air quality for Japan and China to investigate aromatic volatile organic compounds (VOCs) in indoor microenvironments (living room, bedroom, and kitchen) and outdoors in summer and winter during 2006–2007. Samples were taken from Shizuoka in Japan and Hangzhou in China, which are urban cities with similar latitudes. Throughout the samplings, the indoor and outdoor concentrations of many of the targeted VOCs (benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes) in China were significantly higher than those in Japan. The indoor concentrations of VOCs in Japan were somewhat consistent with those outdoors, whereas those in China tended to be higher than those outdoors. Here, we investigated the differences in VOC concentrations between Japan and China. Compositional analysis of indoor and outdoor VOCs showed bilateral differences; the contribution of benzene in China was remarkably higher than that in Japan. Significant correlations (p < 0.05) for benzene were observed among the concentrations in indoor microenvironments and between the outdoors and living rooms or kitchens in Japan. In China, however, significant correlations were observed only between living rooms and bedrooms. These findings suggest differences in strengths of indoor VOC emissions between Japan and China. The source characterizations were also investigated using principal component analysis/absolute principal component scores. It was found that outdoor sources including vehicle emission and industrial sources, and human activity could be significant sources of indoor VOC pollution in Japan and China respectively. In addition, the lifetime cancer risks estimated from unit risks and geometric mean indoor concentrations of carcinogenic VOCs were 2.3 × 10?5 in Japan and 21 × 10?5 in China, indicating that the exposure risks in China were approximately 10 times higher than those in Japan.  相似文献   

7.
A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE < or =2,600,000 parts per billion by volume (ppbv) and trichloroethylene < or =170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10(-6) based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10(-5) based on average values.  相似文献   

8.
The sorption of volatile organic compounds (VOCs) by different building materials can significantly affect VOC concentrations in indoor environments. In this paper, a new model has been developed for simulating VOC sorption and desorption rates of homogeneous building materials with constant diffusion coefficients and material–air partition coefficients. The model analytically solves the VOC sorption rate at the material–air interface. It can be used as a “wall function” in combination with more complex gas-phase models that account for non-uniform mixing to predict sorption process. It can also be used in conjunction with broader indoor air quality studies to simulate VOC exposure in buildings.  相似文献   

9.
Consumer products can emit chlorinated volatile organic compounds (CVOCs) that complicate vapor intrusion (VI) assessments. Assessment protocols acknowledge the need to remove these products during VI investigations, but they can be problematic to identify and locate. Predicting if the products cause detectable air concentrations is also difficult since emission rate information is limited and can vary with product use and age. In this study, the emission rates of 1,2-dichloroethane, trichloroethene, tetrachloroethene, and carbon tetrachloride from four consumer products identified as indoor sources during VI field investigations were measured under laboratory conditions using a flow through system. Emissions of PCE from an adhesive container tube ranged from 1.33 ± 1.13 μg/min (unopened) to 23.9 ± 2.93 μg/min (previously opened). The laboratory-measured emission rates were used to estimate indoor air concentrations, which were then compared to concentrations measured after the products placed were into an actual residence. The estimated and measured indoor air concentrations were generally comparable, showing that emission rate information can be used to determine the relative impact of internal CVOC sources.  相似文献   

10.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

11.
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.  相似文献   

12.
Abstract

The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25% relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

13.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

14.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

15.
A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO2 generation rates were 0.0068–0.0092 l s−1. The per occupant isoprene generation rates of 0.2–0.3 mg h−1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source control measures, in addition to adequate ventilation, are required to limit concentrations of VOCs in office buildings.  相似文献   

16.
Abstract

Vadose zone oxygen sensors can be effectively used to improve bioventing remediation design and monitoring. The capacity of the oxygen sensors for continuously monitoring oxygen concentrations unattended offers an improved approach for bioventing feasibility evaluation and respiration measurements. A new in-situ technique has been developed using these sensors for evaluating respiration rate at the startup of air injection or vapor extraction. This dynamic method imposes little restriction on the flowrate and soil conditions when the oxygen sensors are within the radius of influence, whereas a traditional in-situ oxygen uptake respiration test assumes a static condition. Oxygen uptake respiration tests measure a localized respiration rate. The dynamic method determines a spatially averaged respiration rate in the air flow path between injection point and a sensing point in air injection setup, or within the capture zone of a vapor extraction setup. Because respiration measurements can be made using the new technique at the startup of a remediation process, whether it is air injection or vapor extraction, it allows the process to run without interruption. Using the subsurface oxygen sensor, the dynamic method also allows the respiration rate to be continuously monitored. A case study at a site in Palm Springs, California is used to document the application of this new technique and its advantages. In addition to directly monitoring the radius of influence, the subsurface oxygen sensor can also provide necessary parameters to calculate a radius of influence for a given air injection rate. The Palm Springs case study demonstrates the application, as well as the limitation, of the radius of influence calculation.  相似文献   

17.
During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are explored. This review also considers the phenomenon that has become known as Sick Building Syndrome (SBS), where the occupants of certain affected buildings repeatedly describe a complex range of vague and often subjective health complaints. These are often attributed to poor air quality. However, many cases of SBS provide a valuable insight into the problems faced by investigators attempting to establish causality. We know much less about the health risks from indoor air pollution than we do about those attributable to the contamination of outdoor air. This imbalance must be redressed by the provision of adequate funding, and the development of a strong commitment to action within both the public and private sectors. It is clear that meeting the challenges and resolving the uncertainties associated with air quality problems in the indoor environment will be a considerable undertaking.  相似文献   

18.
Migration of volatile chemicals from the subsurface into overlying buildings is known as vapor intrusion (VI). Under certain circumstances, people living in homes above contaminated soil or ground water may be exposed to harmful levels of these vapors. A popular VI screening-level algorithm widely used in the United States, Canada and the UK to assess this potential risk is the “Johnson and Ettinger” (J&E) model. Concern exists over using the J&E model for deciding whether or not further action is necessary at sites, as many parameters are not routinely measured (or are un-measurable). Using EPA-recommended ranges of parameter values for nine soil-type/source depth combinations, input parameter sets were identified that correspond to bounding results of the J&E model. The results established the existence of generic upper and lower bound parameter sets for maximum and minimum exposure for all soil types and depths investigated. Using the generic upper and lower bound parameter sets, an analysis can be performed that, given the limitations of the input ranges and the model, bounds the attenuation factor in a VI investigation.  相似文献   

19.
Emissions inventories significantly affect photochemical air quality model performance and the development of effective control strategies. However, there have been very few studies to evaluate their accuracy. Here, to evaluate a volatile organic compound (VOC) emissions inventory, we implemented a combined approach: comparing the ratios of carbon bond (CB)-IV VOC groups to nitrogen oxides (NOx) or carbon monoxide (CO) using an emission preprocessing model, comparing the ratios of VOC source contributions from a source apportionment technique to NOx or CO, and comparing ratios of CB-IV VOC groups to NOx or CO and the absolute concentrations of CB-IV VOC groups using an air quality model, with the corresponding ratios and concentrations observed at three sites (Maryland, Washington, DC, and New Jersey). The comparisons of the ethene/NOx ratio, the xylene group (XYL)/NOx ratio, and ethene and XYL concentrations between estimates and measurements showed some differences, depending on the comparison approach, at the Maryland and Washington, DC sites. On the other hand, consistent results at the New Jersey site were observed, implying a possible overestimation of vehicle exhaust. However, in the case of the toluene group (TOL), which is emitted mainly from surface coating and printing sources in the solvent utilization category, the ratios of TOL/ NOx or CO, as well as the absolute concentrations revealed an overestimate of these solvent sources by a factor of 1.5 to 3 at all three sites. In addition, the overestimate of these solvent sources agreed with the comparisons of surface coating and printing source contributions relative to NOx from a source apportionment technique to the corresponding value of estimates at the Maryland site. Other studies have also suggested an overestimate of solvent sources, implying a possibility of inaccurate emission factors in estimating VOC emissions from surface coating and printing sources. We tested the impact of these overestimates with a chemical transport model and found little change in ozone but substantial changes in calculated secondary organic aerosol concentrations.  相似文献   

20.
Air sparging is a remediation technology currently being applied for the restoration of sites contaminated with volatile organic compounds (VOCs). Attempts have been made by various researchers to model the fate of VOCs in the gas and liquid phase during air sparging. In this study, a radial diffusion model with an air–water mass transfer boundary condition was developed and applied for the prediction of VOC volatilization from air sparging of contaminated soil columns. The approach taken was to use various parameters such as mass transfer coefficients and tortuosity factors determined previously in separate experiments using a single air channel apparatus and applying these parameters to a complex system with many air channels. Incorporated in the model, is the concept of mass transfer zone (MTZ) where diffusion of VOCs in this zone was impacted by the volatilization of VOCs at the air–water interface but with negligible impact outside the zone. The model predicted fairly well the change in the VOC concentrations in the exhaust air, the final average aqueous VOC concentration, and the total mass removed. The predicted mass removal was within 1% to 20% of the actual experimental mass removed. The results of the model seemed to suggest that air-sparged soil columns may be modeled as a composite of individual air channels surrounded by a MTZ. For a given air flow rate and air saturation, the VOC removal was found to be inversely proportional to the radius of the air channel. The approach taken provided conceptual insights on mass transfer processes during air sparging operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号