首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nested Grid Model (NGM) is a primitive-equation meteorological model that is routinely exercised over North America for forecasting purposes by the National Meteorological Center. While prognostic meteorological models are being increasingly used to drive air quality models, their use in conducting annual simulations requires significant resources. NGM estimates of wind fields and other meteorological variables provide an attractive alternative since they are typically archived and readily available for an entire year. Preliminary evaluation of NGM winds during the summer of 1992 for application to the region surrounding the Grand Canyon National Park showed serious shortcomings. The NGM winds along the borders between California, Arizona and Mexico tend to be northwesterly with a speed of about 6 m/sec, while the observed flow is predominantly southerly at about 2-5 m/sec. The mesoscale effect of a thermal low pressure area over the highly heated Southern California and western Arizona deserts does not appear to be represented by the NGM because of its coarse resolution and the use of sparse observations in that region. Tracer simulations and statistical evaluation against special high resolution observations of winds in the southwest United States clearly demonstrate the northwest bias in NGM winds and its adverse effect on predictions of an air quality model. The "enhanced" NGM winds, in which selected wind observations are incorporated in the NGM winds using a diagnostic meteorological model provide additional confirmation on the primary cause of the northwest bias. This study has demonstrated that in situations where limited resources prevent the use of prognostic meteorological models, previously archived coarse resolution wind fields in which additional observations are incorporated to correct known biases provide an attractive option.  相似文献   

2.
The Grand Canyon Visibility Transport Commission (GCVTC) was established by the U.S. Congress to assess the potential impacts of projected growth on atmospheric visibility at Grand Canyon National Park and to make recommendations to the U.S. Environmental Protection Agency on what measures could be taken to avoid such adverse impacts. A critical input to the assessment tool used by the commission was three-dimensional model-derived wind fields used to transport the emissions. This paper describes the evaluation of the wind fields used at various stages in the assessment. Wind fields evaluated included those obtained from the Colorado State University Regional Atmospheric Modeling System (RAMS), the National Meteorological Center's Nested Grid Model (NGM), and the National Oceanic and Atmospheric Administration's Atmospheric Transport and Dispersion (ATAD) trajectory model. The model-derived wind fields were evaluated at multiple vertical levels at several locations in the southwestern United States by determining differences between model predicted winds and winds that were measured using radiosonde and radar wind profiler data. Model-derived winds were also evaluated by determining the percent of time that they were within acceptable differences from measured winds. All models had difficulties, generally meeting the acceptable criteria for less than 50% of the predictions. The RAMS model had a persistent bias toward southwesterly winds at the expense of other directions, especially failing to represent channeling by north-south mountain ranges in the lower levels. The NGM model exhibited a substantial bias in the summer months by extending northwesterly winds in the eastern Pacific Ocean well inland, in contrast to the observed southwesterlies at inland locations. The simpler ATAD trajectory model performed somewhat better than the other models, probably because of its use of more upper air sites. The results of the evaluation indicated that these wind fields could not be used to reliably predict source-receptor impacts on a particular day; thus, seasonally averaged impacts were used in the GCVTC assessment.  相似文献   

3.
ABSTRACT

The Grand Canyon Visibility Transport Commission (GCVTC) was established by the U.S. Congress to assess the potential impacts of projected growth on atmospheric visibility at Grand Canyon National Park and to make recommendations to the U.S. Environmental Protection Agency on what measures could be taken to avoid such adverse impacts. A critical input to the assessment tool used by the commission was three-dimensional model-derived wind fields used to transport the emissions. This paper describes the evaluation of the wind fields used at various stages in the assessment. Wind fields evaluated included those obtained from the Colorado State University Regional Atmospheric Modeling System (RAMS), the National Meteorological Center's Nested Grid Model (NGM), and the National Oceanic and Atmospheric Administration's Atmospheric Transport and Dispersion (ATAD) trajectory model. The model-derived wind fields were evaluated at multiple vertical levels at several locations in the southwestern United States by determining differences between model predicted winds and winds that were measured using radiosonde and radar wind profiler data. Model-derived winds were also evaluated by determining the percent of time that they were within acceptable differences from measured winds.

All models had difficulties, generally meeting the acceptable criteria for less than 50% of the predictions. The RAMS model had a persistent bias toward southwesterly winds at the expense of other directions, especially failing to represent channeling by north-south mountain ranges in the lower levels. The NGM model exhibited a substantial bias in the summer months by extending northwesterly winds in the eastern Pacific Ocean well inland, in contrast to the observed southwesterlies at inland locations. The simpler ATAD trajectory model performed somewhat better than the other models, probably because of its use of more upper air sites. The results of the evaluation indicated that these wind fields could not be used to reliably predict source-receptor impacts on a particular day; thus, seasonally averaged impacts were used in the GCVTC assessment.  相似文献   

4.
Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of meteorological observations, as well as the specification of surface characteristics at the observing site. We can be less reliant on these meteorological observations by using outputs from prognostic models, which are routinely run by the National Oceanic and Atmospheric Administration (NOAA). The forecast fields are available daily over a grid system that covers all of the United States. These model outputs can be readily accessed and used for dispersion applications to construct model inputs with little processing. This study examines the usefulness of these outputs through the relative performance of a dispersion model that has input requirements similar to those of AERMOD. The dispersion model was used to simulate observed tracer concentrations from a Tracer Field Study conducted in Wilmington, California in 2004 using four different sources of inputs: (1) onsite measurements; (2) National Weather Service measurements from a nearby airport; (3) readily available forecast model outputs from the Eta Model; and (4) readily available and more spatially resolved forecast model outputs from the MM5 prognostic model. The comparison of the results from these simulations indicate that comprehensive models, such as MM5 and Eta, have the potential of providing adequate meteorological inputs for currently used short-range dispersion models such as AERMOD.  相似文献   

5.
In order to clarify the influence of surface meteorological data assimilation with various resolutions on the photochemical ozone concentration in the southeastern Korean Peninsula, several numerical experiments were conducted. The meteorological and photochemical reaction models used in this study are the fifth-generation mesoscale model (MM5) and the three-dimensional photochemical urban airshed model (UAM-V), respectively. Dense meteorological data make it easier to obtain accurate estimates and surface characteristics than coarse-resolution data. As a result, the estimated temperature obtained from high resolution surface data assimilation in the Busan and Ulsan metropolitan areas is higher than that obtained from coarse resolution surface data assimilation. These high temperatures resulted in strong winds from the sea and a significant dispersion of ozone. In analyses involving an index of agreement (IOA) and root mean square deviation (RMSD), the temperature and wind speed estimated with dense surface data assimilation agreed well with those obtained from observations.However, the influence of dense surface data assimilation tends to be stronger in the flat Ulsan metropolitan area than in the mountainous Busan metropolitan area. This is caused by the heterogeneity of the surface characteristics, including the topography. If the surface parameters induced by regional circulation, such as the topography and land use, are complex and heterogeneous, the efficiency of observational data on data assimilation has to be verified before air pollution is assessed.  相似文献   

6.
Meteorological variables such as temperature, wind speed, wind directions, and Planetary Boundary Layer (PBL) heights have critical implications for air quality simulations. Sensitivity simulations with five different PBL schemes associated with three different Land Surface Models (LSMs) were conducted to examine the impact of meteorological variables on the predicted ozone concentrations using the Community Multiscale Air Quality (CMAQ) version 4.5 with local perspective. Additionally, the nudging analysis for winds was adopted with three different coefficients to improve the wind fields in the complex terrain at 4-km grid resolution. The simulations focus on complex terrain having valley and mountain areas at 4-km grid resolution. The ETA M–Y (Mellor–Yamada) and G–S (Gayno–Seaman) PBL schemes are identified as favorite options and promote O3 formation causing the higher temperature, slower winds, and lower mixing height among sensitivity simulations in the area of study. It is found that PX (Pleim–Xiu) simulation does not always give optimal meteorological model performance. We also note that the PBL scheme plays a more important role in predicting daily maximum 8-h O3 than land surface models. The results of nudging analysis for winds with three different increased coefficients' values (2.5, 4.5, and 6.0 × 10?4 s?1) over seven sensitivity simulations show that the meteorological model performance was enhanced due to improved wind fields, indicating the FDDA nudging analysis can improve model performance considerably at 4-km grid resolution. Specifically, the sensitivity simulations with the coefficient value (6.0 × 10?4) yielded more substantial improvements than with the other values (2.5 and 4.5 × 10?4). Hence, choosing the nudging coefficient of 6.0 × 10?4 s?1 for winds in MM5 may be the best choice to improve wind fields as an input, as well as, better model performance of CMAQ in the complex terrain area. As a result, a finer grid resolution is necessary to evaluate and access of CMAQ results for giving a detailed representation of meteorological and chemical processes in the regulatory modeling. A recommendation of optimal scheme options for simulating meteorological variables in the complex terrain area is made.  相似文献   

7.
A three-dimensional Eulerian photochemical model is used to follow the dynamics of ozone, NOx, and CO over the Athens area, for 25 May 1990, the day considered in the APSIS project. A unique aspect of this work lies in the study of the impacts of the wind field preparation methods on the concentrations predicted by the model. Three sets of wind fields are developed. The first one used is derived from a prognostic meteorological model. The second one is calculated from available wind observations using objective: methods. For these two cases, a previous day is simulated, using the same conditions, to develop preconditioned initial conditions for the following day. For the third simulation, again two days are simulated, this time using the observed winds for each of the two days modeled. The predictions using the prognostically derived and the objective analysis wind fields are significantly different, particularly for the primary pollutants. Comparing predictions to the observations did not favor any particular method of wind field preparation. In this case, when using the prognostically derived field, the simulations are very sensitive to boundary conditions. In contrast, when using the wind fields constructed by objective methods, the simulations became most sensitive to emissions and initial conditions. This comes directly from the different residence times in the domain, which are governed by the wind speed.  相似文献   

8.
Comparisons were made between three sets of meteorological fields used to support air quality predictions for the California Regional Particulate Air Quality Study (CRPAQS) winter episode from December 15, 2000 to January 6, 2001. The first set of fields was interpolated from observations using an objective analysis method. The second set of fields was generated using the WRF prognostic model without data assimilation. The third set of fields was generated using the WRF prognostic model with the four-dimensional data assimilation (FDDA) technique. The UCD/CIT air quality model was applied with each set of meteorological fields to predict the concentrations of airborne particulate matter and gaseous species in central California. The results show that the WRF model without data assimilation over-predicts surface wind speed by ~30% on average and consequently yields under-predictions for all PM and gaseous species except sulfate (S(VI)) and ozone(O3). The WRF model with FDDA improves the agreement between predicted and observed wind and temperature values and consequently yields improved predictions for all PM and gaseous species. Overall, diagnostic meteorological fields produced more accurate air quality predictions than either version of the WRF prognostic fields during this episode. Population-weighted average PM2.5 exposure is 40% higher using diagnostic meteorological fields compared to prognostic meteorological fields created without data assimilation. These results suggest diagnostic meteorological fields based on a dense measurement network are the preferred choice for air quality model studies during stagnant periods in locations with complex topography.  相似文献   

9.
A series of twelve intensively monitored 1-hr CO dispersion studies were conducted near Davis, CA, in winter 1996. The experimental equipment included twelve CO sampling ports at elevations up to 50 m, three sonic anemometers, a tethersonde station, aircraft measurements of wind and temperature profile aloft, and a variety of conventional meteorological equipment. The study was designed to explore the role of vehicular exhaust buoyancy during worst-case meteorological conditions, such as low winds oriented in near-parallel alignment with the road during a surface-based nocturnal inversion. From the study, field estimates of the CO emission factor (EF) from a California vehicle fleet were computed using two different methods. The analysis suggests that the CT-EMFAC/EMFAC (EMission FACtor) models currently used to conduct federal conformity modeling significantly overpredict CO emissions for high-speed, free-flowing traffic on California highways.  相似文献   

10.
ABSTRACT

A series of twelve intensively monitored 1-hr CO dispersion studies were conducted near Davis, CA, in winter 1996. The experimental equipment included twelve CO sampling ports at elevations up to 50 m, three sonic anemometers, a tethersonde station, aircraft measurements of wind and temperature profile aloft, and a variety of conventional meteorological equipment. The study was designed to explore the role of vehicular exhaust buoyancy during worst-case meteorological conditions, such as low winds oriented in near-parallel alignment with the road during a surface-based nocturnal inversion. From the study, field estimates of the CO emission factor (EF) from a California vehicle fleet were computed using two different methods. The analysis suggests that the CT-EMFAC/ EMFAC (EMission FACtor) models currently used to conduct federal conformity modeling significantly overpredict CO emissions for high-speed, free-flowing traffic on California highways.  相似文献   

11.
The Savannah River National Laboratory (SRNL) Weather Information and Display System was used to provide meteorological and atmospheric modeling/consequence assessment support to state and local agencies after the collision of two Norfolk Southern freight trains on the morning of January 6, 2005. This collision resulted in the release of several toxic chemicals to the environment, including chlorine. The dense and highly toxic cloud of chlorine gas that formed in the vicinity of the accident was responsible for 9 fatalities and caused injuries to more than 500 others. Transport model results depicting the forecast path of the ongoing release were made available to emergency managers in the county's Unified Command Center shortly after SRNL received a request for assistance. Support continued over the ensuing 2 days of the active response. The SRNL also provided weather briefings and transport/consequence assessment model results to responders from the South Carolina Department of Health and Environmental Control, the Savannah River Site (SRS) Emergency Operations Center, Department of Energy headquarters, and hazard material teams dispatched from the SRS. Operational model-generated forecast winds used in consequence assessments conducted during the incident were provided at 2-km horizontal grid spacing during the accident response. High-resolution Regional Atmospheric Modeling System (RAMS, version 4.3.0) simulation was later performed to examine potential influences of local topography on plume migration in greater detail. The detailed RAMS simulation was used to determine meteorology using multiple grids with an innermost grid spacing of 125 m. Results from the two simulations are shown to generally agree with meteorological observations at the time; consequently, local topography did not significantly affect wind in the area. Use of a dense gas dispersion model to simulate localized plume behavior using the higher-resolution winds indicated agreement with fatalities in the immediate area and visible damage to vegetation.  相似文献   

12.
In this study, the concept of scale analysis is applied to evaluate two state-of-science meteorological models, namely MM5 and RAMS3b, currently being used to drive regional-scale air quality models. To this end, seasonal time series of observations and predictions for temperature, water vapor, and wind speed were spectrally decomposed into fluctuations operating on the intra-day, diurnal, synoptic and longer-term time scales. Traditional model evaluation statistics are also presented to illustrate how the method of spectral decomposition can help provide additional insight into the models’ performance. The results indicate that both meteorological models under-represent the variance of fluctuations on the intra-day time scale. Correlations between model predictions and observations for temperature and wind speed are insignificant on the intra-day time scale, high for the diurnal component because of the inherent diurnal cycle but low for the amplitude of the diurnal component, and highest for the synoptic and longer-term components. This better model performance on longer time scales suggests that current regional-scale models are most skillful for characterizing average patterns over extended periods. The implications of these results to using meteorological models to drive photochemical models are discussed.  相似文献   

13.
The prediction of spatial variation of the concentration of a pollutant governed by various sources and sinks is a complex problem. Gaussian air pollutant dispersion models such as AERMOD of the United States Environmental Protection Agency (USEPA) can be used for this purpose. AERMOD requires steady and horizontally homogeneous hourly surface and upper air meteorological observations. However, observations with such frequency are not easily available for most locations in India. To overcome this limitation, the planetary boundary layer and surface layer parameters required by AERMOD were computed using the Weather Research and Forecasting (WRF) Model (version 2.1.1) developed by the National Center for Atmospheric Research (NCAR). We have developed a preprocessor for offline coupling of WRF with AERMOD. Using this system, the dispersion of respirable particulate matter (RSPM/PM10) over Pune, India has been simulated. Data from the emissions inventory development and field-monitoring campaign (13–17 April 2005) conducted under the Pune Air Quality Management Program of the Ministry of Environment and Forests (MoEF), India and USEPA, have been used to drive and validate AERMOD. Comparison between the simulated and observed temperature and wind fields shows that WRF is capable of generating reliable meteorological inputs for AERMOD. The comparison of observed and simulated concentrations of PM10 shows that the model generally underestimates the concentrations over the city. However, data from this single case study would not be sufficient to conclude on suitability of regionally averaged meteorological parameters for driving Gaussian models like AERMOD and additional simulations with different WRF parameterizations along with an improved pollutant source data will be required for enhancing the reliability of the WRF–AERMOD modeling system.  相似文献   

14.
In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.  相似文献   

15.
Meteorological factors, pollutant emissions, and geographic regions related to transport of low optical extinction coefficient air to Grand Canyon National Park were examined. Back trajectories were generated by two models, the Atmospheric Transport and Dispersion Model (ATAD) and an approach using the Nested Grid Model output for a Lagrangian particle transport model (NGM/ CAPITA). Meteorological information along the trajectories was analyzed for its relationship to visibility at the Grand Canyon. Case studies considered days with anomalously clean air from the southwest and dirty air from the northwest. Clean air was most frequently from the north and northwest, rarely from the south. Low emissions, high ventilation and washout by precipitation was associated with clean air. All clean days with transport from the Los Angeles area had upper-level low pressure over the region with high ventilation and usually abundant precipitation. The dirtiest days with transport from the northwest were affected by forest fires.  相似文献   

16.
Certain widely used wind rose programs and air dispersion models use an overly simple data-transfer algorithm that induces a directional bias in their output products. The purpose of this paper is to provide a revised algorithm that corrects the directional bias that occurs from the aliasing that occurs when the sector widths used to report wind direction data are on the same order of magnitude, but not equal, to the sector widths used in the wind direction summaries. The directional bias issue arises when output products in 16 direction sectors (22.5 degrees each) are produced from wind direction data reported in terms of 36 sectors (10 degrees each). The result directional bias affects the results of simulations of air and surface concentrations using widely applied air dispersion models. Datasets or models with the directional bias discussed here give consistent positive biases (approximately 30%) for cardinal direction sectors (north, south, east, and west) and consistent negative biases for all of the other sectors (around -10%). Data summary and air dispersion programs providing outputs in direction sectors that do not match the observational sectors need to be checked for this bias. A revised data-transfer algorithm is provided that corrects the directional bias that can occur in transferring wind direction data between different sector widths.  相似文献   

17.
Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM10]).Furthermore, the model underestimated [PM10] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model’s erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM10] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model’s performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM10] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM10] in that region. Both 24-hr and 1-hr measured [PM10] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM10], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and observations, additional research in both the windblown dust emissions model and the weather research/physicochemical model is called for.

Implications: While many dust storms can be considered to be natural, in semi-arid climates such storms often have an anthropogenic component in their sources of dust. Applying the natural, exceptional events policy to these storms with strong signatures of anthropogenic sources would appear not only to be misguided but also to stifle genuine regulatory efforts at remediation. Those dust storms that have resulted, in part, from passage over abandoned farm land should no longer be considered “natural”; policymakers and lawmakers need to compel the owners of such land to reduce its potential for windblown dust.  相似文献   


18.
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9 m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess.  相似文献   

19.
Abstract

Certain widely used wind rose programs and air dispersion models use an overly simple data-transfer algorithm that induces a directional bias in their output products. The purpose of this paper is to provide a revised algorithm that corrects the directional bias that occurs from the aliasing that occurs when the sector widths used to report wind direction data are on the same order of magnitude, but not equal, to the sector widths used in the wind direction summaries. The directional bias issue arises when output products in 16 direction sectors (22.5° each) are produced from wind direction data reported in terms of 36 sectors (10° each). The result directional bias affects the results of simulations of air and surface concentrations using widely applied air dispersion models. Datasets or models with the directional bias discussed here give consistent positive biases (~30%) for cardinal direction sectors (north, south, east, and west) and consistent negative biases for all of the other sectors (around [?10%). Data summary and air dispersion programs providing outputs in direction sectors that do not match the observational sectors need to be checked for this bias. A revised data-transfer algorithm is provided that corrects the directional bias that can occur in transferring wind direction data between different sector widths.  相似文献   

20.
Version 4.10s of the comprehensive air-quality model with extensions (CAMx) photochemical grid model has been developed, which includes two options for representing particulate matter (PM) size distribution: (1) a two-section representation that consists of fine (PM2.5) and coarse (PM2.5-10) modes that has no interactions between the sections and assumes all of the secondary PM is fine; and (2) a multisectional representation that divides the PM size distribution into N sections (e.g., N = 10) and simulates the mass transfer between sections because of coagulation, accumulation, evaporation, and other processes. The model was applied to Southern California using the two-section and multisection representation of PM size distribution, and we found that allowing secondary PM to grow into the coarse mode had a substantial effect on PM concentration estimates. CAMx was then applied to the Western United States for the 1996 annual period with a 36-km grid resolution using both the two-section and multisection PM representation. The Community Multiscale Air Quality (CMAQ) and Regional Modeling for Aerosol and Deposition (REMSAD) models were also applied to the 1996 annual period. Similar model performance was exhibited by the four models across the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network monitoring networks. All four of the models exhibited fairly low annual bias for secondary PM sulfate and nitrate but with a winter overestimation and summer underestimation bias. The CAMx multisectional model estimated that coarse mode secondary sulfate and nitrate typically contribute <10% of the total sulfate and nitrate when averaged across the more rural IMPROVE monitoring network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号