首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Oxidation of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air, of significance due to, for example, the potential for O3 formation, is believed to be initiated by OH attack on the ring (addition) or on the alkyl side chain (H abstraction). A series of ring-breaking reactions follows, with major products predicted to be alpha-dicarbonyls, simple aldehydes, and organic acids. To test this prediction, ambient air mixing ratios of aldehydes (formaldehyde, acetaldehyde, benzaldehyde, glyoxal, and pyruvaldehyde), along with some supporting BTEX data, were measured at an urban site in Las Vegas, NV. Samples were collected on sorbents and determined by chromatographic methods; mixing ratios were compared to ambient levels of CO, O3, and NOx. A meteorological analysis (temperature, wind speed, and wind direction) was also included. Statistically significant relationships were noted among the BTEX hydrocarbons (HCs) and among the photochemically derived species (e.g., O3, NO2, and some of the aldehydes), although there was seasonal variation. The observations are consistent with a common primary source (i.e., vehicular exhaust or fuel evaporation) for the BTEX compounds and a common secondary source (e.g., OH attack) for glyoxal and pyruvaldehyde.  相似文献   

2.
A preliminary measurement of an oxygenated fuel effect for in-use vehicles travelling at freeway speed was conducted near Las Vegas, NV, in January 1991 and May 1992. The experimental design was based on two principal factors: (1) the large volume of traffic that visits Las Vegas from Southern California on three-day holiday weekends and (2) the fact that, at the time of the study, the Las Vegas area used oxygenated fuels in the winter and Southern California did not. Measurements were conducted at carefully selected sites 20 km southwest of Las Vegas near Sloan, NV, and were accomplished with the Fuel Efficiency Automoblie Test (FEAT) remote sensor developed at the University of Denver. The January 1991 measurements were made during the Las Vegas oxyfuel season, while the May 1992 control measurements were made outside the oxyfuel season. Over 24,500 individual CO concentrations were measured; registration data from over 5,500 of these vehicles were obtained from the license plate numbers. After corrections for differences in velocity and mean age, the Las Vegas outbound (oxyfuel) CO emissions on Monday morning of the January holiday weekend showed a difference of -18% +/- 11% compared to the inbound (non-oxyfuel) CO emissions on Friday evening preceding the holiday weekend.  相似文献   

3.
Abstract

During the spring and summer of 2000, 2001, and 2002, gaseous and particulate matter (PM) fuel-based emission factors for ~150,000 low-tailpipe, individual vehicles in the Las Vegas, NV, area were measured via on-road remote sensing. For the gaseous pollutants (carbon monoxide, hydrocarbons, and nitrogen oxide), a commercial vehicle emissions remote sensing system (VERSS) was used. The PM emissions were determined using a Lidar-based VERSS. Emission distributions and their shapes were analyzed and compared with previous studies. The large skewness of the distributions is evident for both gaseous pollutants and PM and has important implications for emission reduction policies, because the majority of emissions are attributed to a small fraction of vehicles. Results of this Las Vegas study and studies at other geographical locations were compared. The gaseous pollutants were found to be close to those measured by VERSS in other U.S. cities. The PM emission factors for spark ignition and diesel vehicles are in the range of previous tunnel and dynamometer studies.  相似文献   

4.
Response     
ABSTRACT

The Las Vegas Valley PM10 Study was conducted during 1995 to determine the contributions to PM10 aerosol from fugitive dust, motor vehicle exhaust, residential wood combustion, and secondary aerosol sources. Twenty-four-hr PM10 samples were collected at two neighborhood-scale sites every sixth day for 13 months. Five week-long intensive studies were conducted over a middle-scale sub-region at 29 locations that contained many construction projects emitting fugitive dust. The study found that the zone of influence around individual emitters was less than 1 km. Most of the sampling sites in residential and commercial areas yielded equivalent PM10 concentrations in the neighborhood region, even though they were more distant from each other than they were from the nearby construction sources. Based on chemical mass balance (CMB) receptor modeling, fugitive dust accounted for 80–90% of the PM10, and motor vehicle exhaust accounted for 3–9% of the PM10 in the Las Vegas Valley.  相似文献   

5.
During the spring and summer of 2000, 2001, and 2002, gaseous and particulate matter (PM) fuel-based emission factors for approximately 150,000 low-tailpipe, individual vehicles in the Las Vegas, NV, area were measured via on-road remote sensing. For the gaseous pollutants (carbon monoxide, hydrocarbons, and nitrogen oxide), a commercial vehicle emissions remote sensing system (VERSS) was used. The PM emissions were determined using a Lidar-based VERSS. Emission distributions and their shapes were analyzed and compared with previous studies. The large skewness of the distributions is evident for both gaseous pollutants and PM and has important implications for emission reduction policies, because the majority of emissions are attributed to a small fraction of vehicles. Results of this Las Vegas study and studies at other geographical locations were compared. The gaseous pollutants were found to be close to those measured by VERSS in other U.S. cities. The PM emission factors for spark ignition and diesel vehicles are in the range of previous tunnel and dynamometer studies.  相似文献   

6.
Starokozhev E  Sieg K  Fries E  Püttmann W 《Chemosphere》2011,82(10):1482-1488
Laboratory experiments were performed to investigate the partitioning behavior of a set of diverse volatile organic compounds (VOCs). After equilibration at a temperature of 25 °C, the VOC concentrations were measured by headspace method in combination with gas chromatography/mass spectrometry (GC/MS). The obtained data were used to determine the partition coefficients (KP) of VOCs in a gas-liguid-solid system. The results have shown that the presence and nature of solid materials in the working solution control the air-water partitioning of dissolved VOCs. The air/solution partitioning of BTEX and C9-C10 aldehydes was most affected in the presence of diesel soot. KP values decreased by a factor ranging from 1.5 for toluene to 3.0 for ethylbenzene. The addition of mineral dust in the working solution exhibited greater influence on the partitioning of short aldehydes. KP values decreased by a factor of 1.8. The experimental partition coefficients were used to develop a predictive model for partitioning of BTEX and n-aldehydes between air, water and solid phases.  相似文献   

7.
The design and function of a device that regulates the relative humidity of an ambient aerosol sample is described. We use this RH controller upstream of MOUDI impactors to permit sampling at relative humidities in the 70–80% range. Humidity control is achieved by allowing the aerosol to approach equilibrium with a saturated salt solution. Benefits to sampling with impactors in this relative humidity range include greatly reduced bounce of fine, hygroscopic particles, minimal flow-induced sizing errors, and minimization of uncertainties in measured size distributions due to diurnal variations in relative humidity during sampling. Data from field measurements in a humid environment (Look Rock, TN) and arid environments (Las Vegas, NV and Meadview, AZ) are discussed.  相似文献   

8.
A new method for determination of hydrogen peroxide in atmospheric samples is described. Cryogenically collected H2O2 is reacted with sodium salicylate in the presence of Fe(2+) to produce dihydroxybenzoate, which is separated from the reaction mixture by high performance liquid chromatography and detected by UV absorption. Measurements of atmospheric H2O2 were conducted in Las Vegas, NV from June 1999 to December 1999 to evaluate and characterize the method. Measured mixing ratios of H2O2 (there were also non-detects) ranged from 0.012 to 2.74 ppbv, with expected correlations to primary gaseous pollutants and strong seasonal variation consistent with a photochemically derived species. It was concluded that the method is easy to use and has sufficient sensitivity and selectivity to be useful in atmospheric monitoring.  相似文献   

9.
An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this “fast flow” in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891–989] and suggest that fast flow in fractures with minimal fracture–matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.  相似文献   

10.
ABSTRACT

Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

11.
This paper presents a global sensitivity and uncertainty analysis of the bromine chemistry included in the Model of Aqueous, Gaseous and Interfacial Chemistry (MAGIC) in dark and photolytic conditions. Uncertainty ranges are established for input parameters (e.g. chemical rate constants, Henry's law constants, etc.) and are used in conjunction with Latin hypercube sampling and multiple linear regression to conduct a sensitivity analysis that determines the correlation between each input parameter and model output. The contribution of each input parameter to the uncertainty in the model output is calculated by combining results of the sensitivity analysis with input parameters' uncertainty ranges. Model runs are compared using the predicted concentrations of molecular bromine since Br2(g) has been shown in previous studies to be generated via an interface reaction between O3(g) and Br(surface)? during dark conditions [Hunt et al., 2004]. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: evidence for interface chemistry. Journal of Physical Chemistry A 108, 11559–11572]. This study also examines the influence of an interface reaction between OH(g) and Br(surface)? in the production of Br2(g) under photolytic conditions where OH(g) is present in significant concentrations. Results indicate that the interface reaction between O3(g) and Br(surface)? is significant and is most responsible for the uncertainty in MAGICs ability to calculate precisely Br2(g) under dark conditions. However, under photolytic conditions the majority of Br2(g) is produced from a complex mechanism involving gas-phase chemistry, aqueous-phase chemistry, and mass transport.  相似文献   

12.
Treated wastewater effluent from Las Vegas, Nevada and surrounding communities’ flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0-10, 10-20, and 20-30 cm. The greatest number of detections in samplers buried in the sediment was at the 0-10 cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment-water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.  相似文献   

13.
Near-roadway ambient black carbon (BC) and carbon monoxide (CO) concentrations were measured at two schools adjacent to a freeway and at an urban background school 2 km from the freeway to determine the change in concentrations attributable to vehicle emissions after the three-lane expansion of U.S. Highway 95 (US 95) in Las Vegas, Nevada. Between summer 2007 and summer 2008, average weekday small-vehicle volume increased by 40% ± 2% (standard error). Average weekday large-vehicle volume decreased by 17% ± 5%, due to a downturn in the economy and an associated decline in goods movement. Average vehicle speed increased from 58 to 69 mph, a 16% ± 1% increase. The authors compared BC and CO concentrations in summer 2007 with those in summer 2008 to understand what effect the expansion of the freeway may have had on ambient concentrations: BC and CO were measured 17 m north of the freeway sound wall, CO was measured 20 m south of the sound wall, and BC was measured at an urban background site 2 km south of the freeway. Between summer 2007 and summer 2008, median BC decreased at the near-road site by 40% ± 2% and also decreased at the urban background site by 24% ± 4%, suggesting that much of the change was due to decreases in emissions throughout Las Vegas, rather than only on US 95. CO concentrations decreased by 14% ± 2% and 10% ± 3% at the two near-road sites. The decrease in BC concentrations after the expansion is likely due to the decrease in medium- and heavy-duty-vehicle traffic resulting from the economic recession. The decrease in CO concentrations may be a result of improved traffic flow, despite the increase in light-duty-vehicle traffic.
ImplicationsMonitoring of BC and CO at near-road locations in Las Vegas demonstrated the impacts of changes in traffic volume and vehicle speed on near-road concentrations. However, urban-scale declines in concentrations were larger than near-road changes due to the impacts of the economic recession that occurred contemporaneously with the freeway expansion.  相似文献   

14.
Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4 × 10−4 M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds.  相似文献   

15.
Abstract

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was ±0.6 μg/m3 organic material, ±0.3 μg/m3 ammonium sulfate, and ±0.07 μg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

16.
Volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylene (BTEX) along with inorganic gases such as sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) levels were found in the atmosphere of the Kemerburgaz region where environmental issues became a major concern due to nearby incineration plant and waste disposal facility in Istanbul. Ten sampling locations were selected considering possible sources in the study area. The sampling areas were classified as suburban, industrial, rural, and background regions. Sampling campaigns were carried out for four-week periods from March 2011 to August 2012 in all locations. Elevated concentrations of BTEX around roads and the industrial locations indicated that vehicle exhaust and industrial activities were the main sources of these pollutants in the region. Concentrations of NO2 were also high around roads. A much more uniform distribution was observed for SO2 during sampling periods. However higher levels were observed at suburban locations due to the use of coal for local heating especially during winter. Ozone concentrations were low at the industrial locations and roadsides, but high in suburban and rural locations downwind from the sources. The results of these organic and inorganic gases meet the national limit values. Furthermore, a lifetime risk assessment methodology was used to evaluate the potential adverse health effects of BTEX. The mean cancer risk level for benzene was estimated to be 7.71E-07 that is lower than assigned acceptable risk level of 1.0E-04. Toluene, ethylbenzene, and xylenes were lower than the specified level of 1.0 with respect to mean non-carcinogenic risks. The findings reveal that determined BTEX emissions do not pose a health threat to residents in the studied region.  相似文献   

17.
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the University of North Carolina (UNC) 270 m3 dual outdoor aerosol smog chamber facility. The model adequately simulates the decay of toluene, the nitric oxide (NO) to nitrogen dioxide (NO2) conversion and ozone formation. It also provides a reasonable prediction of SOA production under different conditions that range from 15 to 300 μg m−3. Speciation of simulated aerosol material shows that up to 70% of the aerosol mass comes from oligomers and polymers depending on initial reactant concentrations. The dominant particle-phase species predicted by the mechanism are glyoxal oligomers, ketene oligomers from the photolysis of the toluene OH reaction product 2-methyl-2,4-hexadienedial, organic nitrates, methyl nitro-phenol analogues, C7 organic peroxides, acylperoxy nitrates and for the low-concentration experiments, unsaturated hydroxy nitro acids.  相似文献   

18.
An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.  相似文献   

19.
ABSTRACT

This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (Ksas) and desorption (Kdad) were estimated.This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization,and the values of the overall mass transfer coefficient for volatilization (Kgag) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

20.
Abstract

This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO2) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (<5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (≥7% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号