首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Air quality standards are established to prevent or minimize the risk of adverse effects from air pollution to human health, vegetation, and materials. In order to develop standards which provide an adequate measure of protection to vegetation, it is necessary to define, in as precise terms as possible, the relationship between ambient air quality and the potential for adverse effects on vegetation. Based on recent evidence published in the literature, as well as retrospective studies using data from the National Crop Loss Assessment Network (NCLAN), cumulative indices can be used to describe exposures of ozone for predicting agricultural crop effects. However, the mathematical form of the standard that may be proposed to protect crops does not necessarily have to be of the same form as that used in the statistical or process oriented mathematical models that relate ambient ozone exposures with vegetation effects. This paper discusses the limitations associated with applying a simple statistic that may take the place of a more biologically meaningful exposure parameter. While the NCLAN data have been helpful in identifying indices that may be appropriate for establishing exposure-response relationships, the limitations associated with the NCLAN protocol need to be considered when attempting to apply these relationships in the establishment of a secondary national ambient air quality standard. The Weibull model derived from NCLAN experiments must demonstrate its generality and universal applicability. Furthermore, its predictive power must be tested using independent sets of field data.  相似文献   

2.
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.  相似文献   

3.
The present National Ambient Air Quality Standard for ozone has many statistical problems, including use of extreme values which have inherent large fluctuations, a compliance test that can gradually lower the target of the design value below the standard level, and inconsistencies between the number-of-exceedances criterion and the design value. The above problems can be avoided or minimized by using a more robust statistic, such as the 95th percentile, and applying a statistical compliance test, without sacrificing the stringency of the standard. Analysis of EPA’s ozone data shows that the annual 95th percentiles and their three-year means have less variability than the annual second highest values and the fourth highest values in three years, respectively. A t test for the mean of the annual 95th percentiles is proposed for compliance testing not only to preserve the averaging concept of the present standard, but also to take account of ozone concentration fluctuations in order to increase the stability of the compliance status of a site or a Metropolitan Statistical Area. A procedure is provided to adjust the level of the 95th-percentile standard so that the stringency of the present standard is preserved.  相似文献   

4.
5.
Abstract

Two problems exist in the form and the compliance test of the present National Ambient Air Quality Standard (NAAQS) for ozone. One is the use of the number of exceedances in the form of the standard, which generates confusion and unnecessary complexity when the form is translated to the design value. The other is the requirement of a zero percent chance of violation in the compliance test, which makes the NAAQS considerably more stringent than generally assumed. There are also two sample-size problems in the estimation procedure for the design value. One is the upward creeping of the (n+l)th highest value in n years as n increases from one in the table look-up approach. The other is the infinite-sample-size assumption instead of the number of high-ozone season days per year for the daily maximum ozone concentrations in the distribution fitting approach. Both problems lead to an exaggeration of the design value.

The above problems can be removed in a revised NAAQS by (1) using a statistic that is identical to the design value itself in the form of the standard, (2) defining the design value as an n-year mean of, say, the annual mth highest values rather than the xth highest value in n years, and (3) using a simple compliance test like the t test that compares the design value with the level of the standard, taking into account the year-to-year fluctuation of the annual mth highest values. When the design value of an area is close to the level of the standard, the test provides a natural “too close to call” interval, which adjusts itself with the fluctuation of the annual mth highest values, so that as the fluctuation increases, the ability to assign the compliance status of the area decreases. The inclusion of a “too close to call” interval or category in the standard is critical to reduce the tendency toward ozone attainment flip-flops in areas approaching attainment and to assure that the ozone NAAQS is not more or less stringent than it appears.  相似文献   

6.
Abstract

This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 μm (PM10) and fine PM with aerodynamic diameter of less than 2.5 μm (PM2.5) ranged from 32.2 to 76.6 μg m-3 and 11.1 to 23.7 μg m-3, respectively. OC (34%), SO4 = (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10, geological material (57.9%), OC (17.3%), and SO4 = (9.7%) were the major components. Coarse fraction (PM10 –PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r2 = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 μm.  相似文献   

7.
Abstract

The field of ozone air quality modeling, or as it is commonly referred to, photochemical air quality modeling, has undergone rapid change in recent years. Improvements in model components, as well as in methods of interpreting model performance, have contributed to this change. Attendant with this rapid change has been a growing need for those developing and using air quality models and policy makers to have a common understanding of the use and role of models in the decision making process. This Critical Review highlights recent advances and continuing problem areas in photochemical air quality modeling. Emphasis is placed on the components and input data for such models, model performance evaluation, and the implications for their use in regulatory decisions.  相似文献   

8.
Since the 1960s, much effort has been devoted to collecting and formatting air quality data. This paper discusses 1) the availability of air quality data for assessing potential biological impacts associated with ozone and sulfur dioxide ambient exposures, 2) examples of how air quality data can be characterized for assessing vegetation effects, and 3) the limitations associated with some exposure parameters used for developing relevant vegetation doseresponse yield reduction models. Data are presented showing that some ozone monitoring sites not continuously affected by local urban sources experience consecutive hourly ozone exposures ≥0.10 ppm in the late evening and early morning hours. These sites experience their maximum ozone concentrations either in the spring or summer months. Sites influenced by local rural sources experience their maximum ozone concentrations during the summer months. It is suggested that further research be performed to identify whether the sensitivity of a target organism at the time of exposure, as well as the pollutant concentration and chemical form that enters into the target organism, is as important in defining effects as air pollutant exposure alone.  相似文献   

9.
As part of the exposure assessment scheme for a community-based air pollution health effects study, 43 homes of study participants, located in two Houston neighborhoods, were monitored for weekly-average indoor formaldehyde levels by means of diffusion samplers. Consecutive 12-hour aldehyde sampling for one-week periods was conducted in 12 of the homes by means of pumps and impingers. In six houses where simultaneous monitoring with both methods occurred, good correlation between the results from the diffusion samplers and the standard impinger method was observed. Diffusion sampler precision was variable and lower than expected, and a small positive measurement bias could be inferred. The distribution of house-average indoor formaldehyde concentrations from diffusion monitoring was similar to that obtained during a previous housing survey in Houston, with concentrations in 19 percent of the homes exceeding 0.10 ppm. Formaldehyde levels in this group of conventional, mostly older homes could not be associated with smoking, cooking, home age or structure type. However, there was a statistically significant difference between mean indoor concentrations in the two neighborhoods.  相似文献   

10.
For assessing the efficacy of a specific form of the National Ambient Air Quality Standard for 03, those exposure patterns that result in vegetation and human health effects must be identified. For vegetation, it has been found that the higher hourly average concentrations should be weighted more than the lower concentrations. Controlled human exposure work supports the suggestion that concentration may be more important than exposure duration and ventilation rates. It has been indicated in the literature that the current form of the federal 03 standard may not be appropriate for protecting vegetation and human health from 03 exposures. The proposed use of the cumulative index alone as a form of the standard may not provide sufficient protection to vegetation. An extended-period average index, such as a daily maximum 8-hour average concentration, may not be appropriate to protect human health because of the reduced ability to observe differences among hourly 03 concentrations exhibited within exposure regimes. For both vegetation and human health effects research, additional experimentation is required to identify differences in responses that occur when ambient-type exposure regimes are applied. Any standard promulgated to protect vegetation and human health from 03 exposures should consider combining cumulative exposure indices with other parameters so that those unique exposures that have the potential for eliciting an adverse effect can be adequately described.  相似文献   

11.
Facts that must be taken into consideration in developing fluoride standards for vegetation effects include: (1) Fluoride is an accumulative toxicant and injury is usually associated with long-term exposure; (2) gaseous and particulate fluorides differ in their phytotoxicity; (3) plant species and varieties differ greatly in susceptibility to fluoride; (4) extremely low concentrations can cause damage to sensitive species. Three possible approaches to standards are discussed: Atmospheric fluoride concentration, vegetation fluoride concentration, and the presence of leaf necrosis or chlorosis. Atmospheric fluoride concentration has the advantage that it fits the conventional concept of standards and that it is objective. Accurately measuring low fluoride concentrations, separating gaseous from particulate fluorides in the air sample, and establishing a safe concentration present technical problems, however. Vegetation analysis may more closely represent fluorides available to affect the plant. The presence of significant amounts of fluoride-induced leaf necrosis (e.g., 3% of the leaf area) may be the most practical approach to standards for fluoride vegetation effects. Advantages are that the combined effects of the forms of fluoride, species and varieties, and concentration-time relationships are all manifest in the factor that is measured. Relatively little time is required to examine the vegetation in a large area and only 2 or 3 surveys a year are required.  相似文献   

12.
The APCA Critical Review entitled “Ozone Air Quality Models” was presented by John H. Seinfeld, Louis E. Nohl Professor and Executive Officer for Chemical Engineering at the California Institute of Technology, Pasadena, California. Dr. Seinfeld presented his review at the 81st APCA Annual Meeting & Exhibition, held in Dallas, Texas in June 1988. The Critical Review paper, published in the May 1988 issue of JAPCA, highlighted recent advances and continuing problem areas in photochemical air quality modeling. Prepared discussions and floor comments presented during the Critical Review session in Dallas are published here, along with additional comments and closing remarks by Dr. Seinfeld. Howard M. Ellis, Chairman of the Critical Review Subcommittee of the Publications Committee, served as moderator of the 1988 APCA Critical Review session.  相似文献   

13.
Abstract

Emission trading is a market‐based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NOx) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three‐dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NOx from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day‐to‐day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

14.
Abstract

Despite the widespread application of photochemical air quality models (AQMs) in U.S. state implementation planning (SIP) for attainment of the ambient ozone standard, documentation for the reliability of projections has remained highly subjective. An “idealized” evaluation framework is proposed that provides a means for assessing reliability. Applied to 18 cases of regulatory modeling in the early 1990s in North America, a comparative review of these applications is reported. The intercomparisons suggest that more than two thirds of these AQM applications suffered from having inadequate air quality and meteorological databases. Emissions representations often were unreliable; uncertainties were too high. More than two thirds of the performance evaluation efforts were judged to be substandard compared with idealized goals. Meteorological conditions chosen according regulatory guidelines were limited to one or two cases and tended to be similar, thus limiting the extent to which public policy makers could be confident that the emission controls adopted would yield attainment for a broad range of adverse atmospheric conditions. More than half of the studies reviewed did not give sufficient attention to addressing the potential for compensating errors. Corroborative analyses were conducted in only one of the 18 studies reviewed. Insufficient attention was given to the estimation of model and/or input database errors, uncertainties, or variability in all of the cases examined. However, recent SIP and policy‐related regional modeling provides evidence of substantial improvements in the underlying science and available modeling systems used for regulatory decision making. Nevertheless, the availability of suitable databases to support increasingly sophisticated modeling continues to be a concern for many locations. Thus, AQM results may still be subject to significant uncertainties. The evaluative process used here provides a framework for modelers and public policy makers to assess the adequacy of contemporary and future modeling work.  相似文献   

15.
This paper presents a statistical method for filtering out or moderating the influence of meteorological fluctuations on ozone concentrations. Use of this technique in examining trends in ambient ozone air quality is demonstrated with ozone data from a monitoring location in New Jersey. The results indicate that this method can detect changes in ozone air quality due to changes in emissions in the presence of meteorological fluctuations. This method can be useful in examining the effectiveness of regulatory initiatives in improving ozone air quality.  相似文献   

16.
A background of ozone (O3), principally of stratospheric origin, is present in the lower free troposphere. Typical mean O3 levels of 50 ppb, 40 ppb, and 30 ppb are encountered here in spring, summer, and fall, respectively. Maximum hourly O3 concentrations which are twice these mean values can be expected. Ozone from the free troposphere is routinely brought down to ground level under turbulent atmospheric conditions. Deep and rapid Intrusions of stratospheric air into the lower troposphere are associated with low-pressure troughs and occur regularly. In the mid troposphere, O3 levels as high as 300 ppb are found within these intrusions. Observational data showing these intrusions, containing high O3 concentrations, to directly reach ground level are currently lacking. Over the United States, an intrusion was present aloft on 8 9% of the days in 1978. The frequency, however, is somewhat reduced in summer and a northward movement is evident. During 1978, no intrusion occurred south of 30°N between June and August and none south of 40 °N in August.

The hypothesis that low levels of stratospheric O3 produce disproportionately large amounts of O3 in the polluted atmosphere cannot be supported from currently known chemistry but should be studied further. The experimental technique involving a 7Be/O3 ratio to estimate the daily stratospheric component of ground level O3 is unverified and considered to be inadequate for air quality applications. Estimates resulting from such a technique are considered uncertain by a factor of more than three. Specially designed aircraft studies provide the best means to determine quantitatively the impact of stratospheric O3 on ground level air quality.  相似文献   

17.
The purpose of this paper is to demonstrate the use of some statistical methods for examining trends in ambient ozone air quality downwind of major urban areas. To this end, daily maximum 1 -hr ozone concentrations measured over New Jersey, metropolitan New York City and Connecticut for the period 1980 to 1989 were assembled and analyzed. This paper discusses the application of the bootstrap method, extreme value statistics and a nonparametric test for evaluating trends in urban ozone air quality. The results indicate that although there is an improvement in ozone air quality downwind of New York City, there has been little change in ozone levels upwind of New York City during this ten-year period.  相似文献   

18.
通过对现行大气中的氯化氢(HCl)质量标准的来源、毒理作用的分析、各类标准的比较及标准的可行性等几方面的阐述,指出了现行标准在执行中存在的缺陷,提出了应对现行大气中HCl的标准进行重新核定的建议。  相似文献   

19.
This article analyzes numerical variability In ozone air quality data to understand how this variability affects the number of violations seen each year in metropolitan statistical areas (MSAs). Three commonly cited violation indices are used: 1) the annual number of expected exceedances averaged over 3 years is greater than 1; 2) the n+ 1th hourly value in n years of data is greater than 0.12 ppm; and 3) the annual number of expected exceedances is greater than 1. Only the first index is consistent with applicable regulations. The analyses indicate that about 23 percent of all MSAs with valid data had one or more change In their ozone violation status between 1979 and 1987. This change in status occurred for approximately 7 percent of all MSA-years of available data. This statistic was about one-third of the value usually obtained when the two incorrect, but commonly used, criteria of ozone violations are used.  相似文献   

20.
A computerized simulation model has been developed to compute energy requirements of a limestone slurry flue gas desulfurization (FGD) system as a function of FGD system design parameters, power plant characteristics, coal properties, and sulfur dioxide emission regulation. Results are illustrated for a "base case" plant of 500 MW, burning 3.5% sulfur coal, meeting the federal new source performance standard of 1.2 lb SO2/106 Btu. The flue gas is cleaned by an electrostatic precipitator followed by a limestone FGD system with a TCA scrubbing vessel and an optimized in-line steam reheater. The total FGD system energy requirement for this case was found to be 3.4% of the total energy input to the boiler. Sensitivity analyses were then performed in which the nominal values of ten system parameters were individually varied. This caused the total FGD system energy requirement to vary between 2.5 % and 6.1 % of the gross plant output for the range of parameters tested. The most sensitive parameters were found to be scrubbing slurry pH, which affects pumping requirements, and stack gas exit temperature, which affects reheat requirements. In all cases, FGD energy requirements were minimized when the SO2 emission standard was met by partially bypassing the scrubber. In light of the recent Clean Air Act Amendments this option may not be feasible in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号