首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this study, the authors investigated the influence of the valence state of Mn on the efficacy of selective catalytic reduction using a Mn-based catalyst. The nitrogen oxides (NOx) conversion rate of the catalyst was found to be dependent on the type of TiO2 support employed and on the temperature, as the catalyst showed an excellent conversion of > 80% at a space velocity of 60,000 hr(-1) when the temperature was above 200 degrees C. Brunauer-Emmett-Teller, X-ray diffraction, and X-ray photoelectron spectroscopy analyses confirmed that catalyst displaying the highest activity contained the Mn4+ species and that its valence state was highly dependent on the pH during the catalyst preparation.  相似文献   

2.
TiO2-supported manganese oxide catalysts formed using different calcination temperatures were prepared by using the wet-impregnation method and were investigated for their activity in the low-temperature selective catalytic reduction (SCR) of NO by NH3 with respect to the Mn valence and lattice oxygen behavior. The surface and bulk properties of these catalysts were examined using Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Catalysts prepared using lower calcination temperatures, which contained Mn4+, displayed high SCR activity at low temperatures and possessed several acid sites and active oxygen. The TPD analysis determined that the Brönsted and Lewis acid sites in the Mn/TiO2 catalysts were important for the low-temperature SCR at 80~160 and 200~350 °C, respectively. In addition, the available lattice oxygen was important for attaining high NO to NO2 oxidation at low temperatures.

Implications: Recently, various Mn catalysts have been evaluated as SCR catalysts. However, there have been no studies on the relationship of adsorption and desorption properties and behavior of lattice oxygen according to the valence state for manganese oxides (MnOx). Therefore, in this study, the catalysts were prepared by the wet-impregnation method at different calcination temperatures in order to show the difference of manganese oxidation state. These catalysts were then characterized using various physicochemical techniques, including BET, XRD, TPR, and TPD, to understand the structure, oxidation state, redox properties, and adsorption and desorption properties of the Mn/TiO2 catalysts.  相似文献   

3.

The Mn/Co mixed powders with various Mn/Co molar ratios were prepared by the coprecipitation method and used in low-temperature CO oxidation. The physicochemical characteristics of these powders were characterized using the Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM) analyses. The results demonstrated that the Mn/Co molar ratio significantly affected both the textural and catalytic properties and the sample with a Mn/Co = 1:1 possessed a BET area of 123.7 m2g−1 with a small mean pore size of 6.44 nm. The catalytic results revealed that the pure cobalt and manganese catalysts possessed the low catalytic activity and the pure Co catalyst is not active at temperatures lower than 140 °C. The highest catalytic activity was observed for the catalyst with a Mn/Co = 1. The obtained results showed that the incorporation of Pd into the Mn/Co catalyst significantly enhanced the catalytic activity for oxidation of carbon monoxide and the highest CO conversion was observed for the catalyst with 1 wt.% Pd and this catalyst exhibited a CO conversion of 100% at 80 °C.

  相似文献   

4.
A series of iron–manganese oxide catalysts supported on TiO2 and titanium nanotubes (TNTs) were studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in the presence of SO2. The results showed that the specific surface area and the amount of Brønsted acid sites were highly correlated. The results also demonstrated that higher Mn4+/Mn3+ ratios and larger specific surface areas might be the main reasons for the excellent performance of MnFe-TNTs catalyst after SO2 poisoning. The SO2 poisoning effect could be minimized by reducing the GHSV, increasing the reaction temperature, or increasing the [NH3]/[NO] molar ratio. The results also indicated that the formation of ammonium sulfate had a stronger effect on the NO conversion efficiency as compared to the formation of metal sulfate. Thus operating the low temperature SCR at above 230 oC to avoid the formation of ammonium sulfate would be the priority choice when SO2 poisoning is a concerned issue.?Implications: Low-temperature selective catalytic reduction (SCR) has attracted increasing attention due to that it can reduce the energy consumption for the SCR process employed in industries such as steel plants and glass manufacturing plants. However, it also suffers from the sulfur dioxide (SO2) poisoning problem. This study investigates the possibility of using titania nanotubes (TNTs) as the support of Mn/Fe bimetal oxide catalysts for low-temperature SCR to reduce the SO2 poisoning. The results indicated that the MnFe-TNT catalyst can tolerate SO2 for a longer time as compared with the MnFe-TiO2 catalyst.  相似文献   

5.
Abstract

This paper concerns the incineration of isopropyl alcohol (IPA) using the ferrospinel catalyst MnFe2O4. It covers the preparation of the ferrospinel catalyst, the screening of catalytic activity, catalytic incineration testing, and 72-hr decay testing of the catalyst. The experimental results of catalyst screening reveal that the Mn/Fe catalyst is the best of five prepared catalysts (chromium/iron [Cr/Fe], manganese/iron [Mn/Fe], zinc/iron [Zn/Fe], nickel/iron [Ni/Fe], and pure magnetite [Fe3O4]). In tests of the catalytic incineration system used to convert IPA, 98% conversion was obtained at a space velocity of 24,000 hr?1, an oxygen (O2) content of 21%, 1700 ppm of IPA, and a reaction temperature of 200 °C.  相似文献   

6.
ABSTRACT

This study investigated the effect of adding vanadium (V) to natural manganese oxide (NMO) in ammonia (NH3) selective catalytic reduction (SCR). The addition of V to NMO decreased the catalytic activity at low temperatures by blocking the active site. However, the enhancement of catalytic activity was achieved by controlling NH3 oxidation at high temperatures. From the NH3 temperature programmed desorption and oxygen on/off test, it was confirmed that the amount of Lewis acid site and active lattice oxygen of the catalyst affects the catalytic performance at low temperature

IMPLICATIONS Recently, NMO and manganese oxide have been reported as SCR catalysts. They usually have only reported the reaction characteristics and catalytic activity on the NH3 SCR over NMO or manganese/metal oxide catalysts. There are no studies about the effect of addition of V to NMO. Therefore, this study investigates the catalytic activity and reaction characteristics on the NH3 SCR over NMO and V/NMO, and a new application is proposed based on the conclusions of this study.  相似文献   

7.
氧化锰矿渣改性制备SCR脱硝催化剂   总被引:2,自引:1,他引:1  
以锰酸钾生产过程中产生的氧化锰矿渣为原料,制备了一系列Mn基SCR脱硝催化剂。研究了活性炭、二氧化钛、以及含锰量的变化对催化剂的脱硝活性的影响。结果表明,直接由矿渣制备的催化剂和添加活性炭、二氧化钛制备的催化剂,其最大脱硝率分别为40%和78%。XPS表征发现催化剂中的锰元素存在多种氧化价态,活性炭的加入在一定程度上改变了不同价态之间的相对含量;在矿渣中加入硫酸锰后,发现总锰含量达到10%时,催化剂的最大脱硝率从78%降低至57%,XRD测试发现硫酸锰的加入导致S2O27-物种的生成,可能是引起催化剂活性下降的原因之一;而加入醋酸锰至总锰含量达到10%时,增大了催化剂的活性温度窗口,当总锰含量达到20%时,在空速10 000 h-1条件下,催化剂的最大脱硝率达到86.7%。  相似文献   

8.
A series of manganese-cerium oxide (MnOx-CeO2) catalysts supported by Ti-bearing blast furnace slag were prepared by wet impregnation and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. The slag-based catalyst exhibited high nitrogen oxide removal (deNOx) activity and wide effective temperature range. Under the condition of NO = 500 ppm, NH3 = 500 ppm, O2 = 7–8 vol%, and total flow rate = 1600 mL/min, the Mn-Ce/Slag catalyst exhibited a NO conversion higher than 95% in the range of 180–260 °C. The activity of Mn/Slag catalysts was greatly enhanced with the addition of CeO2. The results indicated that Ti-bearing blast furnace slag had suitable phase composition as good support of SCR catalyst.

Implications: Ti-bearing blast furnace slag is a kind of industrial waste in China. Much slag was underused and piling up, which could cause many environmental issues, such as enormous waste of titanium and groundwater and soil contamination by heavy metals in leachates. The utilization of slag as the support of SCR catalyst will not only make use of solid waste but also cut down the NOx emitted from power plant.  相似文献   


9.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

10.
A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV) = 2400 hr?1 and hybrid SNCR/SCR with SV = 6000 hr?1, since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV = 2400~6000 hr?1 SCR and 850~1050 °C SNCR, NSR = 1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature.

Implications:?NOx control is very important, since they are the part of greenhouse gases as well as the cause of acid rain and ozone hole. A technology, so-called hybrid SNCR/SCR process, was tested using Mn-V2O5/TiO2 monolithic catalyst for NOx reduction, and the method is promising. The results of this study would provide some ideas to parties such as policy makers, environmental engineers, and so on.  相似文献   

11.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

12.
ABSTRACT

Fe3+-, Cr3+-, Cu2+-, Mn2+-, Co2+-, and Ni2+-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe3+-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by ~85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

13.

Co-Fe, Cu-Cr, and Co-Mn mixed oxide catalysts were prepared using a one-pot hard template synthesis method, and their catalytic performance was investigated before and after the rearrangement of the template. To evaluate the structural properties of the catalysts, various analyses were employed, including the BET, XRD, H2-TPR, FE-SEM, EDX, and X-ray digital mapping of the elements. The results indicated that the rearrangement of the catalyst structure had a profound effect on the structural and catalytic properties, so that in all three synthesized catalysts, the specific surface and the reducibility increased significantly, and the crystalline structure and morphology of the catalysts changed remarkably. The specific surface area of the CoFe, CuCr, and CoMn catalysts increased from 3.5, 1.1, and 72.9 m2/g to 151.3, 52.8, and 108.0 m2/g, respectively. These structural changes significantly increased the catalytic performance. The results indicated that the 100% conversion temperature of the CoMn catalyst as the optimal sample after rearrangement was reduced from 250 to 125 °C. Also, the stability of the CoMn catalyst in dry and wet conditions was investigated and the results indicated that the presence of water vapor reduced the activity and stability of the catalyst. The activation energy was also calculated on Co-Mn catalyst (59.5 kJ/mol) and the results confirmed that the most probable mechanism for this reaction was the MVK mechanism.

  相似文献   

14.
Abstract

The speciation of Hg in coal-fired flue gas can be important in determining the ultimate Hg emissions as well as potential control options for the utility. The effects of NOx control processes, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), on Hg speciation are not well understood but may impact emissions of Hg. EPRI has investigated the reactions of Hg in flue gas at conditions expected for some NOx control processes. This paper describes the methodology used to investigate these reactions in actual flue gas at several power plants. Results have indicated that some commercial SCR catalysts are capable of oxidizing elemental Hg in flue gas obtained from the inlets of SCR or air heater units. Results are affected by various flue gas and operating parameters. The effect of flue gas composition, including the presence of NH3, has been evaluated. The influence of NH3 on fly ash Hg reactions also is being investigated.  相似文献   

15.
Selective catalytic reduction (SCR) catalysts are deactivated by several mineral and metallic trace elements at highly variable rates determined by fuel quality and furnace firing conditions. With a loss in activity, NO is reduced over a longer inlet length of the SCR monolith, which leaves a shorter trailing section to sustain the most favorable conditions to oxidize Hg0 and SO2. Since virtually no operating SCR was designed for Hg oxidation and since different monoliths are routinely combined as layers in particular units, the Hg oxidation performance of any SCR fleet is largely unmanaged. The analysis in this paper directly relates a measurement or manufacturer’s forecast on the deterioration in NO reduction with age to corresponding estimates for oxidation of Hg0. It accommodates any number of catalyst layers with grossly different properties, including materials from different manufacturers and different ages. In this paper, the analysis is applied to 16 full-scale SCRs in the Southern Company fleet to demonstrate that catalyst deactivation disrupts even the most prominent connections among the Hg0 oxidation performance of commercial SCRs and the behavior of fresh catalysts at lab, pilot, and even full scale.

Implications: Catalyst deactivation confounds even the most prominent connections among the Hg0 oxidation performance of commercial SCRs and the behavior of fresh catalyst at lab, pilot, and even full scale. The halogen dependence has been emphasized throughout the literature on catalytic Hg0 oxidation, based on a large database on fresh catalysts. But for deactivated catalysts in commercial SCRs, the number of layers is much more indicative of the Hg0 oxidation performance, in that SCRs with four layers perform better than those with three layers, and so on. The new qualified conclusion is that Hg0 oxidation is greater for progressively greater HCl concentrations only among SCRs with the same number of layers, even for an assortment of catalyst design specifications and operating conditions.  相似文献   


16.
低温选择性催化还原(SCR)脱硝是国内外脱硝技术研发的热点,但目前主要集中在实验室小试范围,无法完全反映催化剂在实际烟气中的运行状况。在30 t/h循环流化床燃煤锅炉脱硫除尘装置后建设了2 000~5 000 m3/h的SCR脱硝中试装置,经系统研究发现,中试使用的蜂窝式催化剂对SO2和NO具有很强的吸附能力,且反应温度、喷氨速率和气体空速均会影响催化脱硝效率。为期5 d的连续运行实验结果表明,催化剂的脱硝效率一直稳定在30%~50%,并未发现明显的失活,这证明设计除雾除尘器、较大的混合器、混合器与反应器间较长的管路均有利于缓解催化剂因SO2、H2O和飞灰中的碱性金属导致的失活。  相似文献   

17.
Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium- and titanium-based composite honeycomb catalyst and enhanced urea (NH2CONH2) were used with a natural-gas-fired furnace at a NOx concentration of 110 ppm. Changes in SNCR chemical injection temperature and stoichiometry led to varying levels of post-furnace ammonia (NH3), which acts as the reductant feed to the downstream SCR catalyst. The urea-based chemical could routinely achieve SNCR plus SCR total NOx reductions of 85 percent with less than 3 ppm NH3 slip at reductant/NOx stoichiometries ranging from about 1.5 to 2.5 and SCR space velocities of 18,000 to 32,000 h?1. This pilot-scale research has shown that SNCR and SCR can be integrated to achieve high NOx removal. SNCR provides high temperature reduction of NOx followed by further removal of NOx and minimization of NH3 slip by a significantly downsized (high-space velocity) SCR.  相似文献   

18.
以锐钛矿型二氧化钛和钛钨粉(5%WO3-TiO2)为载体,制备了系列钒和钨负载量不同的钒钛催化剂,考察碱金属和碱土金属(钾、钠和钙)对催化剂在氨选择性催化还原(NH3-SCR)氮氧化物反应中催化活性的影响。钾、钠和钙对钒钛催化剂的中毒影响大小顺序为钾钠钙。提高钒钛催化剂中钒的含量可显著提高催化剂的SCR活性和抗碱金属中毒性能,但高钒负载量(4.5%V2O5)造成催化剂氮气选择性明显下降,氧化亚氮生成显著增加。钨的添加有利于提高钒钛催化剂的低温活性和抗碱金属中毒性能,对氮气选择性无明显影响。  相似文献   

19.
采用共沉淀法,以Al2O3为载体制备Mn/γ-Al2O3和Mn—Ce/Mn/γ-Al2O3催化剂,并分别在N2气氛和O2气氛下焙烧。采用固定床连续流动反应器,研究所制备催化剂在室温条件下催化臭氧氧化甲苯的性能。通过XRD、XPS和FTIR等手段对催化剂的结构和组成进行表征。结果表明,Mn/Mn/γ-Al2O3催化剂具有良好的催化臭氧氧化甲苯和催化臭氧自身分解的性能,共沉淀法制备催化剂的最佳Mn负载量为20%。O2气氛焙烧和Ce的加入,可以有效提高催化剂的活性和寿命。原因是O2气氛焙烧和Ce的加入可以提高Mn的氧化价态。催化剂失活的主要原因是有机副产物在催化剂表面吸附堆积,失活催化剂在550℃、空气气氛下焙烧可恢复催化性能。  相似文献   

20.
Manganese acetate (MnAc) and manganese nitrate (MnN) were employed as precursors for the preparation of MnAc)/TiO2, Mn (N)/TiO2, Mn(Ac)-Ce/TiO2, and Mn(N)-Ce/TiO2 by impregnation. These complexes were used as catalysts in the low-temperature selective catalytic reduction of NO with NH3. The influence of manganese precursors on catalyst characteristics, the reduction activity, and the stability of the catalysts to poisoning by H2O and SO2 were studied. Experiments showed that Mn(N) produced MnO2 with large grain sizes in Mn(N)/TiO2 catalyst. On the contrary, Mn(Ac) led to highly dispersed and amorphous Mn2O3 in Mn (Ac)/TiO2 catalyst, which had better catalytic activity and stability to SO2 at low temperatures. The doping of cerium reduced the differences in catalytic performance between the catalysts derived from different Mn precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号