首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT

Wet electrostatic precipitators (WESPs) are modern-era pollution control systems specifically designed to capture ultrafine particles as well as acid mist, highly resistive and sticky particles; however, this requires the use of expensive corrosion-resistant metal alloys. The work presented here is part of a continuing study at Ohio University aimed at reducing the cost of WESPs by using a novel combination of a polymer collector surfaces with a hybrid composite discharge electrode. In this study, a hybrid composite discharge electrode was tested, for the first time, inside a semi-pilot-scale experimental setup, with collection surfaces consists of a vertical array of strands. Particle laden gases were passed through this array of polymer ropes, which were kept wet by a small flow of water. The discharge electrodes were composite laminates of carbon fibers in a polymer matrix enclosing a metal mesh. The preliminary results showed that this new integrated system of composite discharge electrode and polymer collector surfaces can match or exceed the performance of a conventional metal alloy electrostatic precipitator (ESP) with metal discharge electrodes. There are additional advantages due to the system being compact, lightweight, and highly corrosion resistant.

Implications: This study focused on integrating and assessing performance of a novel hybrid composite electrode (HCE) inside semi-pilot novel cross-flow electrostatic precipitator at conditions typically observed in coal-fired power plant exhausts. The results were collected for particulate collection efficiencies and were compared with a rigid metal electrode. The HCE outperformed metal electrode by showing higher particulate collection efficiency. This result showcases substantial potential for these two new technologies (HCE and cross-flow system) as a substitute for conventional metal based wet ESPs.  相似文献   

2.
Abstract

The Australian Air Quality Forecasting System (AAQFS) is one of several newly emerging, high-resolution, numerical air quality forecasting systems. The system is briefly described. A public education application of the air quality impact of motor vehicle usage is explored by computing the concentration and dosage of particulate matter less than 10 µm in aerodynamic diameter (PM10) for a commuter traveling to work between Geelong and Melbourne, Victoria, Australia, under “business-as-usual” and “green” scenarios. This application could be routinely incorporated into systems like AAQFS. Two methodologies for calculating the dosage are described: one for operational use and one for more detailed applications. The Clean Air Research Programme-Personal Exposure Study in Melbourne provides support for this operational methodology. The more detailed methodology is illustrated using a system for predicting concentrations due to near-road emissions of PM10 andapplied in Sydney.  相似文献   

3.
ABSTRACT

Microwave regeneration of adsorbents facilitates the recovery of volatile organic compounds (VOCs) by decoupling the bed heating from the stripping gas. This makes possible the creation of a highly-concentrated regeneration effluent from which the VOCs can be recovered by condensation at near-ambient temperatures. The economic feasibility of two novel microwave-regenerated adsorption systems was evaluated by systematically comparing the capital and operating costs of the proposed systems with 10 conventional VOC control technologies. The microwave systems were found to have similar capital and operating costs to conventional steam regeneration systems and, therefore, may present an attractive alternative for recovering water-miscible solvents. In general, the cost of the microwave subsystem is a relatively small component of the overall system costs, and the microwave power requirements are within the range of commercially available generators, even for large emission streams.  相似文献   

4.
ABSTRACT

Evaluation of alternate strategies for municipal solid waste (MSW) management requires models to calculate environmental emissions as a function of both waste quantity and composition. A methodology to calculate waste component-specific emissions associated with MSW combustion is presented here. The methodology considers emissions at a combustion facility as well as those avoided at an electrical energy facility because of energy recovered from waste combustion. Emission factors, in units of kg pollutant per metric ton MSW entering the combustion facility, are calculated for CO2-biomass, CO2-fossil, SOx , HCl, NOx , dioxins/furans, PM, CO, and 11 metals. Water emissions associated with electrical energy offsets are also considered. Reductions in environmental emissions for a 500-metric-ton-per-day combustion facility that recovers energy are calculated.  相似文献   

5.
ABSTRACT

Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

IMPLICATIONS The results of the research presented in this paper can be readily used by school districts and policy-makers who are interested in purchasing hybrid school buses. Very little information about actual on-road fuel consumption or costs is available. Because the cost of a hybrid bus can be significantly more than the cost of a conventional bus, the information provided in this paper can be very useful for an agency to determine the costs and benefits of a hybrid bus. The information is also useful to researchers who are studying hybrid school and transit buses.  相似文献   

6.
ABSTRACT

A pollution source may release residuals to any of several environmental media, depending on the process design and control strategies. These residuals then are subject to transfer, transport, and transformation within the interconnected compartments of the environmental system. The exposure and susceptibility of people and other receptors to pollutants are different in these various media, and so the risks imposed will vary according to the fate of the pollutants in the system. Because of interactions between compartments in the system, a single-medium approach to environmental management that mitigates problems in one environmental medium at a time independently of risks through other media may not minimize the aggregate risk a receptor receives from all pathways. Alternatively, a multimedia approach advocates focusing on the full environmental system providing pathways for exposure and selecting risk management strategies based on minimization of the aggregate and cumulative risk from all pathways and all compounds. This study combines multimedia risk analysis and an optimization framework to examine a methodology for selecting waste treatment/disposal and pollution control measures, applies the methodology to a sludge management decision problem, and considers the implications for continued use of single-medium analyses.  相似文献   

7.
Abstract

A major component of the Southern Oxidants Study (SOS) 1992 Atlanta Intensive was the measurement of atmospheric nonmethane hydrocarbons. Ambient air samples were collected and analyzed by a network of strategically located automated gas chromatography (GC) systems (field systems). In addition, an extensive canister sampling network was deployed. Combined, more than 3000 chromatograms were recorded. The SOS science team targeted for quantitative analysis 56 compounds which may be substantial contributors to ozone formation or used as air mass tracers. A quality assurance program was instituted to ensure that good measurements were being made throughout the network for each target compound. Common, high-quality standards were used throughout the network. The performance of individual field systems was evaluated during the intensive through the analysis of challenge mixtures. This methodology helped to identify and correct analytical problems as they arose.  相似文献   

8.
A study of the effect of water vapor on the photochemical system NO2 + alphapinene + hv was conducted. A Hotpack Environmental Room was used as a constant temperature chamber, a bank of ultraviolet and fluorescent lamps as a source of simulated solar radiation, and a 150-liter FEP Teflon bag as a reaction vessel. Representative concentrations of 10 pphm NO2 and 50 pphm alphapinene were used in a 3 × 2 × 2 factorial design where absolute humidities of 0.0000, 0.0090, 0.01 80 g H2O/g dry air were varied.

Matheson zero air was passed through a clean air train and used as the diluent. Nitrogen dioxide was added to the reaction mixture by a permeation tube, and water and alpha-pinene by evaporation techniques.

Variables measured as a function of time over a 2-hour irradiation period were total oxidants (Mast Ozone Meter), condensation nuclei (General Electric Small Particle Detector), ozone (Regener Chemiluminescent Ozone Meter), nitrogen dioxide and nitric oxide (Technicon Autoanalyzer), and alpha-pinene (Perkin- Elmer Model 800 gas chromatograph).

Upon irradiation, systems containing nitrogen dioxide and alpha-pinene formed oxidants, ozone, condensation nuclei, and nitric oxide. Based on the differences between simultaneous oxidant and ozone measurements, the formation of peroxide- like compounds may be inferred. During the course of the irradiation, nitrogen dioxide and alpha-pinene were consumed. The concentration-time profiles of all variables were characteristic of those exhibited by typical photochemical smog systems.

An effect of water vapor on the systems studied was demonstrated. Increasing humidity decreased net mean/time oxidant and ozone production and net maximum condensation nuclei production. These effects were significant at a 0.05 confidence level. Effects of water on average mean/time NO2, NO, and alphapinene concentrations were insignificant at this level. The oxidant to ozone ratio was found to decrease with increasing humidity.

The significant decreases in net oxidant and ozone production and NO2 consumption with increasing water vapor concentration in systems of nitrogen dioxide alone, suggests that water manifests an effect on pertinent inorganic reactions, and the data also suggest additional water participation in the organic reactions.  相似文献   

9.
Abstract

This paper presents an analysis of the possible application of integrated heating-cooling systems in buildings. The general algorithm of integrated heating-cooling system design aid was formulated. The evaluation criteria of technically acceptable variants were defined. Fossil fuel energy consumption, carbon dioxide emission, investment, and total exploitation cost were identified as the most important factors describing the considered decision problem. The multicriteria decision aid method ELECTRE III was proposed as the decision tool for the choice of the most compromised variant. The proposed method was used for a case study calculation—the choice of an integrated heating-cooling system for an office building.  相似文献   

10.
Abstract

Salmonella and Campylobacter are significant issues for poultry processors because of increasing regulatory standards as well as public health concerns. The goal of this study is to report the effects of two different pre-chiller systems that utilize different temperatures and water recirculation systems on whole bird carcass rinsates. Both pre-chiller tanks were contained within a single poultry processing facility and operated at different temperatures and water systems. The incidence of Campylobacter spp. and Salmonella spp., as well as the aerobic plate counts on whole bird carcass rinses are reported in this study from each pre-chiller system. The results from this study reveal that there are significant differences in how microbial populations and pathogens change over time in each pre-chiller system. Furthermore, we identify that these patterns are different per system. Such data are impactful as it indicates that measuring carcasses within a plant must consider both temperature and water recirculation as it may prevent comparability of different lines within a single processing facility.  相似文献   

11.
Abstract

The physical and mathematical bases of a new receptor model based on spatially intensive data are presented. The model apportions the average concentration of a species as measured at many sites among several spatially distinct sources and can be applied to primary or secondary species. In the latter case, no assumptions concerning transformation or deposition rates are required. The methodology is a combination of the empirical orthogonal function approach that is well known in meteorology and the self-modeling multivariate modeling approach that has long been applied in chemometrics and multivariate receptor modeling of air quality data. A simple, geometrical example of the modeling approach is given.  相似文献   

12.
Abstract

An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.  相似文献   

13.
Abstract

With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NOx]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NOx in the case of a class-8 truck but were more accurate as the truck weight increased.  相似文献   

14.
Abstract

The quality of stationary source emission factors is typically described using data quality ratings, which provide no quantification of the precision of the emission factor for an average source, nor of the variability from one source to another within a category. Variability refers to actual differences caused by differences in feedstock composition, design, maintenance, and operation. Uncertainty refers to lack of knowledge regarding the true emissions. A general methodology for the quantification of variability and uncertainty in emission factors, activity factors, and emission inventories (EIs) is described, featuring the use of bootstrap simulation and related techniques. The methodology is demonstrated via a case study for a selected example of NOx emissions from coal-fired power plants. A prototype software tool was developed to implement the methodology. The range of interunit variability in selected activity and emission factors was shown to be as much as a factor of 4, and the range of uncertainty in mean emissions is shown to depend on the interunit variability and sample size. The uncertainty in the total inventory of ?16 to +19% was attributed primarily to one technology group, suggesting priorities for collecting data and improving the inventory. The implications for decision-making are discussed.  相似文献   

15.
Background, aim, and scope

The need for global and integrated approaches to water resources management, both from the quantitative and the qualitative point of view, has long been recognized. Water quality management is a major issue for sustainable development and a mandatory task with respect to the implementation of the European Water Framework Directive as well as the Swiss legislation. However, data modelling to develop relational databases and subsequent geographic information system (GIS)-based water management instruments are a rather recent and not that widespread trend. The publication of overall guidelines for data modelling along with the EU Water Framework Directive is an important milestone in this area. Improving overall water quality requires better and more easily accessible data, but also the possibility to link data to simulation models. Models are to be used to derive indicators that will in turn support decision-making processes. For this whole chain to become effective at a river basin scale, all its components have to become part of the current daily practice of the local water administration. Any system, tool, or instrument that is not designed to meet, first of all, the fundamental needs of its primary end-users has almost no chance to be successful in the longer term.

Materials and methods

Although based on a pre-existing water resources management system developed in Switzerland, the methodological approach applied to develop a GIS-based water quality management system adapted to the Romanian context followed a set of well-defined steps: the first and very important step is the assessment of needs (on the basis of a careful analysis of the various activities and missions of the water administration and other relevant stakeholders in water management related issues). On that basis, a conceptual data model (CDM) can be developed, to be later on turned into a physical database. Finally, the specifically requested additional functionalities (i.e. functionalities not provided by classical commercial GIS software), also identified during the assessment of needs, are developed. This methodology was applied, on an experimental basin, in the Ialomita River basin.

Results

The results obtained from this action-research project consist of a set of tangible elements, among which (1) a conceptual data model adapted to the Romanian specificities regarding water resources management (needs, data availability, etc.), (2) a related spatial relational database (objects and attributes in tables, links, etc.), that can be used to store the data collected, among others, by the water administration, and later on exploited with geographical information systems, (3) a toolbar (in the ESRI environment) offering the requested data processing and visualizing functionalities. Lessons learned from this whole process can be considered as additional, although less tangible, results.

Discussion

The applied methodology is fairly classical and did not come up with revolutionary results. Actually, the interesting aspects of this work are, on the one hand, and obviously, the fact that it produced tools matching the needs of the local (if not national) water administration (i.e. with a good chance of being effectively used in the day-to-day practice), and, on the other hand, the adaptations and adjustments that were needed both at the staff level and in technical terms.

Conclusions

This research showed that a GIS-based water management system needs to be backed by some basic data management tools that form the necessary support upon which a GIS can be deployed. The main lesson gained is that technology transfer has to pay much attention to the differences in existing situations and backgrounds in general, and therefore must be able to show much flexibility. The fact that the original objectives could be adapted to meet the real needs of the local end-users is considered as a major aspect in achieving a successful adaptation and development of water resources management tools. Time needed to setup things in real life was probably the most underestimated aspect in this technology transfer process.

Recommendations and perspectives

The whole material produced (conceptual data model, database and GIS tools) was disseminated among all river basin authorities in Romania on the behalf of the national water administration (ANAR). The fact that further developments, for example, to address water quantity issues more precisely, as envisaged by ANAR, can be seen as an indication that this project succeeded in providing an appropriate input to improve water quality in Romania on the long term.

  相似文献   

16.
Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 µg/m3), exhibiting concentration peaks close to 733 µg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 × 10?3 to 0.20 g/m3/hr), which proves the hybrid system’s effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter.
ImplicationsIndoor air pollution is nowadays recognized as a major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene.  相似文献   

17.
ABSTRACT

Emissions from automobiles and trucks operating on public roads represent a major portion of the air pollutants included in emission inventories. When emission data are prepared for air quality modeling studies, such as those supporting development of a State Implementation Plan, an emission processor matches the spatial and temporal resolution of the emissions to the requirements of the modeling study. However, the spatial location of vehicular emissions is not known and must be estimated. This paper presents a methodology for determining the spatial distribution of the roads belonging to a road class using geospatial data functions, such as those commonly provided by a geographic information system. Vehicle-miles traveled (VMT) are then allocated to medium-resolution (12 x 12-km) and fine-resolution (4 x 4-km) modeling grids using both this methodology and the existing top-down methodology, which uses population density. The results show a significant difference in the spatial distribution of VMT between these two methodologies. Based upon these results, we recommend using the road class-specific methodology in lieu of the population methodology for spatially allocating vehicular emissions for medium- and finer-resolution modeling grids.  相似文献   

18.
Abstract

The 1,2,3,4‐tetrachloro‐7‐fluorodibenzo‐p‐dioxin has been synthesized via condensation of 4‐fluorocatechol and pentachloronitrobenzene. This compound could be used as an internal standard for the analysis of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin by Chromatographic methods.  相似文献   

19.
ABSTRACT

An alternate compliance strategy (ACS) is developed which incorporates pollution prevention and flexibility to replace traditional end-of-pipe (EOP) control strategy regulation. The ACS takes into consideration the intent of the 1990 Clean Air Act Amendments (CAAA) to incorporate pollution prevention into regulations and provides a viable mechanism for implementation. This proposed new compliance strategy was developed after studying the CAAA regulations, related compliance issues, and pollution prevention literature. The ACS is defined by amending language in the Hazardous Organic National Emission Standards for Hazardous Air Pollutants (HON) regulation into a performance-based standard permitting regulated facilities to design compliance programs to meet all requirements.

A change in regulation is considered reasonable only if it forces the same emission reductions, reduces risk a comparable amount, and is acceptable to the public, the regulators, and the regulated industry. In order to demonstrate that the ACS can meet all these requirements, an example application is summarized from an ethylene oxide-ethylene glycol plant. The example demonstrates that the ACS reduces hazardous air pollution (HAP) emissions more than the HON rule requires. Three evaluation methods are developed and applied to further demonstrate the acceptability of the ACS. They include a qualitative evaluation matrix, a total cost assessment, and

a risk reduction measurement model. Results indicate that the ACS provided a preferable compliance program.

The ACS should be adopted as an alternative method of compliance. It provides a major step in the progression of regulations from the traditional EOP treatment philosophy to pollution prevention performance-based standards.  相似文献   

20.
Abstract

The emission of Volatile Organic Compounds (VOCs) is attracting increasing concern both from the public and by government agencies. Among the many available control technologies for the treatment of VOC containing waste streams, incineration offers an ultimate disposal strategy rather than a means for collecting or concentrating the offending compounds. This paper describes the major, commercially available thermal and catalytic incinerator systems that are designed to treat dilute, VOC containing gas streams. Qualitative guidelines are presented whereby the technologies can be compared. In addition, an example waste stream is used to illustrate a simplified procedure for calculating the material and energy balances for each of the incinerators. The resulting parameters will be used in a companion paper to estimate the capital and operating costs associated with each design. In this manner, a first estimate can be obtained of the costs of cleaning a waste stream containing low levels of VOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号