首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A two-dimensional numerical model for evaluating the wind flow and pollutant dispersion within a street canyon was first developed using the FLUENT code, which was then validated against a wind tunnel experiment. Then, the effects of the upstream building width and upwind building arrangement on the airflow and pollutant dispersion inside an isolated street canyon were investigated numerically. The numerical results revealed that: (1) the in-canyon vortex center shifts downwards as the upstream building width increases; (2) the recirculation zone covers the entire upstream building roof for the cases when W/H = 0.5, 1.0, 1.5, and 2.0 (W is the upstream building width and H is the building height), whereas the flow reattaches the upstream building roof for the cases when W/H = 2.5 and 3.0; (3) when the upstream building width is shorter than the critical width WC (= 2H), an increase in the upstream building width leads to an increase in the pollution level on the leeward wall of the canyon and a decrease in the roof-level concentrations at the upstream building; (4) when the upstream building width is longer than the critical width, the roof-level concentrations at the upstream building are negligibly small and the pollution level on the leeward wall of the canyon is almost unaffected by a further increase in the upstream building width; (5) when the buildings are placed upwind of the canyon, the flow attaches the upstream building roof and, therefore, almost none of the pollutants are distributed on the upstream building roof; and (6) the pollution levels inside the canyon and on the downstream building roof increase significantly with the number of upwind buildings.  相似文献   

2.
A two-dimensional numerical model for simulating airflow and pollutant dispersion inside an urban street canyon was first developed using the FLUENT code, and then it was validated against a wind tunnel experiment. Then the effects of strength and position of pollutant sources on pollutant dispersion within an urban street canyon were investigated numerically. The numerical results showed that the dimensionless pollutant concentrations within the urban street canyon were independent from the source strength. The results also revealed that the pollutant distributions inside the urban street canyon with a two-lane road were influenced significantly by the positions of the two sources: 1) the closer the two sources were to the street center of the canyon, the lower the pollutant concentrations on the leeward wall and at the human respiration level in the leeward footpath became; 2) the pollutant concentrations on the windward wall and at the human respiration level in the windward footpath were not sensitive to the locations of the two sources as long as the source on the windward lane was situated outside the small recirculation zone at the bottom corner of the canyon windward wall; 3) the pollutant concentrations on the lower parts of the windward and leeward walls as well as in the two footpaths increased greatly when the two sources were moved from outside into the small recirculation zones.  相似文献   

3.
4.
5.
A long-term dispersion model is presented for traffic and space heating emissions in urban areas, allowing fast assessment of the spatial-averaged and center-maximum pollutant concentrations.

The assumption of study areas with circular shape and normal emissions density profiles is made for the purpose of streamlining model inputs with the inventory data normally available. In addition, the rather typical assumptions of Gaussian dispersion, narrow plume, flat or gently rolling terrain, homogeneous wind field and nonreactive pollutants are made. Values of σz from Briggs correlation are used with an initial value of 30 to account for building effects.

Meterological data inputs are reduced to six parameters, inventory data inputs to two, while computations are simplified to a degree that use of a digital computer is not required.

The model is well suited to yield separate assessments for individual types of sources and control measures, as well as to reveal sensitivities from parameters such as city size, or emission density levels and distribution patterns. Its predictions are virtually identical to those of the CDM-2 UNAPMAR model for study areas with circular shape and normal emissions density profiles, and as results do not appear overly sensitive to shape and distribution patterns, the model is believed to be valid for most urban areas.  相似文献   

6.
The effects of removing moisture from gaseous samples on the measurement of pollutant concentration were studied. Simple mathematical analysis was conducted to derive the formula for correcting the measured results. It was found that the error increases with increase in relative humidity or increase in temperature. The error may become significant under extreme conditions.  相似文献   

7.
Recent theoretical and experimental investigations Indicate that turbulent diffusion behind moving vehicles Is Influenced by the speed of the vehicle. Vertical wake induced turbulent diffusion, explicitly treated in the numerical ROADWAY model, is proportional to the square of the wind speed relative to the moving vehicle. Hence, the model predictions of turbulent mixing and pollutant concentrations on and downwind of a roadway are dependent upon the traffic speed. It Is expected from theoretical considerations that the effect of vehicle speed on pollutant concentrations will be more significant during stable atmospheric conditions, because in neutral and unstable conditions the vehicle-wake turbulence is quickly masked by the ambient turbulence. In this study, experimental data are utilized to evaluate the theoretical predictions of the effects of traffic speed on the ambient pollutant concentrations. The effects of vehicle speed upon ambient concentrations are investigated through wind tunnel experiments and field studies that used dual tracers. Consistent with predictions of the ROADWAY model, data obtained near the Long Island Expressway indicate that the influence of traffic speed on the ambient pollutant concentrations Is not significant during unstable and neutral conditions. The Long Island experiment did not provide sufficient field data to assess the model predictions of the traffic speed effect during stable atmospheric conditions.  相似文献   

8.
Laboratory determinations of ambient traffic odors were conducted in the streets of Stockholm. The measurements were made with a sensory method based on signal detection theory. The occurrence of odors was expressed by an index of detectability (d′) which was compared to the ambient carbon monoxide concentration and the rhythm of the traffic. The results showed that the detection technique employed could well be adjusted to field conditions by use of a mobile odor laboratory. Also, the odor index (d′) was correlated with other parameters in the trafficked environment in the expected way. The odorous emissions are likely to be diluted quickly as distance from the street increases. However, the relevance of the index of detectability as a measure of dose and response needs to be studied further.  相似文献   

9.
Abstract

Certain widely used wind rose programs and air dispersion models use an overly simple data-transfer algorithm that induces a directional bias in their output products. The purpose of this paper is to provide a revised algorithm that corrects the directional bias that occurs from the aliasing that occurs when the sector widths used to report wind direction data are on the same order of magnitude, but not equal, to the sector widths used in the wind direction summaries. The directional bias issue arises when output products in 16 direction sectors (22.5° each) are produced from wind direction data reported in terms of 36 sectors (10° each). The result directional bias affects the results of simulations of air and surface concentrations using widely applied air dispersion models. Datasets or models with the directional bias discussed here give consistent positive biases (~30%) for cardinal direction sectors (north, south, east, and west) and consistent negative biases for all of the other sectors (around [?10%). Data summary and air dispersion programs providing outputs in direction sectors that do not match the observational sectors need to be checked for this bias. A revised data-transfer algorithm is provided that corrects the directional bias that can occur in transferring wind direction data between different sector widths.  相似文献   

10.
Abstract

Transit traffic through the Austrian Alps is of major concern in government policy. Pollutant burdens resulting from such traffic are discussed widely in Austrian politics and have already led to measures to restrict traffic on transit routes. In the course of an environmental assessment study, comprehensive measurements were performed. These included air quality observations using passive samplers, a differential optical absorption spectroscopy system, a mobile and a fixed air quality monitoring station, and meteorological observations. As was evident from several previous studies, dispersion modeling in such areas of complex terrain and, moreover, with frequent calm wind conditions, is difficult to handle. Further, in the case presented here, different pollutant sources had to be treated simultaneously (e.g., road networks, exhaust chimneys from road tunnels, and road tunnel portals). No appropriate system for modeling all these factors has so far appeared in the literature. A prognostic wind field model coupled with a Lagrangian dispersion model is thus presented here and is designed to treat all these factors. A comparison of the modeling system with results from passive samplers and from a fixed air quality monitoring station proved the ability of the model to provide reasonable figures for concentration distributions along the A10.  相似文献   

11.
12.
ABSTRACT

In August 1995, measurements of CO, NOx, speciated nonmethane hydrocarbons (NMHC), and CO2 were made in Vancouver's Cassiar Connector, a 730-m-long level-grade highway traffic tunnel. Two characteristics of the Vancouver setting are the presence of many propane vehicles and a mandatory inspection and maintenance (I/M) program. Although the driving conditions and vehicle fleets are otherwise outwardly similar to those of recent Tuscarora-tunnel studies, CO/NO ratios at the Cassiar Connector are significantly lower than those measured at Tuscarora. The Cassiar measurements are consistent with the MOBILE5A mobile emissions model predictions. The Canadian version of MOBILE5A—known as MOBILE5C—gives nearly identical results, indicating that differences in Canadian and U.S. emission standards cannot explain differences between Cassiar and U.S. tunnels. Considering the modeling results as well as measured ethene/acetylene ratios indicative of noncatalyst vehicles, it appears that vehicle deterioration remains the major issue in in-use vehicle emissions—even in Vancouver, where there is a mandatory loaded-mode I/M program.  相似文献   

13.
A model based on K-theory has been developed for describing the short range air dispersion from area sources of non-buoyant toxics. Model parameter estimation is via boundary layer theory. Lateral dispersion by plume meander is considered but ail other sources of horizontal dispersion are neglected. The model can be applied on and near area sources and it can be adapted for predictions of downwind concentrations with a wide variety of meteorological Inputs.

The model has been evaluated by simulating the data obtained during atmospheric tracer studies and by comparison to vinyl chloride concentrations near the BKK landfill in southern California. The model appears to represent a useful and accurate tool for regulatory planning and risk assessment close to area sources of toxics.  相似文献   

14.
ABSTRACT

Pollutant measurements in traffic tunnels have been used to estimate motor-vehicle emissions for several decades. The objective in this type of study is to use the traffic tunnel as a tool for characterizing motor vehicles rather than seeking a tunnel design with acceptably low pollutant concentrations. In the past, very simple aerodynamic models have been used to relate measured concentrations to vehicle emissions. Typically, it is assumed that velocities and concentrations are uniform across the tunnel cross section. In the present work, a vehicle emitting a known amount of sulfur hexafluoride (SF6) was driven repeatedly through a 730-m-long traffic tunnel in Vancouver, Canada. Comparing the measured SF6 concentrations to the known emission rates, it is possible to directly assess the accuracy of the simple tunnel aerodynamic models typically used to interpret tunnel data. Correction factors derived from this procedure were then applied to measurements of carbon monoxide and other pollutants to obtain gram-per-kilometer emission factors for vehicles. Although the specific correction factors measured here are valid only for the tunnel tested, the magnitude of the factors (up to two or more) suggests that the phenomena observed here should be considered when interpreting data from other tunnels.  相似文献   

15.
16.
ABSTRACT

Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility is presented. Four levels are considered: operational, diagnostic, mechanistic, and probabilistic evaluations. First, a comprehensive model evaluation should be conducted in at least two distinct geographical locations and for several meteorological episodes. Next, streamlined evaluations can be conducted for other similar applications if the comprehensive evaluation is deemed satisfactory. In all cases, the operational evaluation alone is insufficient, and some diagnostic evaluation must always be carried out. Recommendations are provided for designing field measurement programs that can provide the data needed for such model performance evaluations.  相似文献   

17.
In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOX), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement d values reaching 0.58, fractional bias “FB” and geometric mean bias “MG” values approaching 0 and 1, respectively, and normalized mean square error “NMSE” values as low as 2.17. However, median ratios of predicted to observed concentrations “Cp/Co” at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOX, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations “FAC2” values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability.
Implications In the absence of site-specific source emission factors, the use of internationally reported emission factors without testing their validity may generate significant errors. Instead, recorded field measurements and meteorological data may be combined with atmospheric transport and dispersion models to better estimate source emissions, particularly in regulatory compliance studies. In this context, lower model performance is expected at higher wind speeds for most indicators such as CO, PM10, and SO2.  相似文献   

18.
In a previous paper,1 we showed that the mean effects on daily mortality associated with air pollution are essentially the same for gases and particulate matter (PM) and are invariant with respect to particle size and composition, based on 27 statistical studies that had been published at that time. Since then, a new analysis2 reported stronger mortality associations for the fine fractions of PM obtained from dichotomous samplers, relative to the coarse fractions. In this paper, we show that differential measurement errors known to be present in dichotomous sampler data preclude reliable determination of such statistical relationships by particle size. Further, it is necessary to consider gaseous pollutants simultaneously with particles to provide robust estimates of the responsibilities for the implied daily mortality gradients. Finally, certain regression model specifications may be sensitive to differences in frequency distribution characteristics according to particle size.  相似文献   

19.
Abstract

Ambient air measurements of N2O, NOx, CO, and HC based on grab sampling were conducted in a major traffic tunnel in Sweden, that carries up to 4,000 vehicles per hour, in order to estimate real-world emissions of N2O for road traffic. Two different methods—relative and mass balance—were used to calculate a N2O emission factor for the mixed vehicle fleet, which gave an average emission factor, at average speeds of 30-70 km/h, of approximately 25 mg N2O/ km, with a range of 7-56 mg/km.  相似文献   

20.
A new complex source microcomputer model has been developed for use at civil airports and Air Force bases. This paper describes both the key features of this model and its application in evaluating the air quality impact of new construction projects at three airports: one in the United States and two in Canada.

The single EDMS model replaces the numerous models previously required to assess the air quality impact of pollution sources at airports. EDMS also employs a commercial data base to reduce the time and manpower required to accurately assess and document the air quality impact of airfield operations.

On July 20, 1993, the U.S. Environmental Protection Agency (EPA) issued the final rule (Federal Register, 7/20/93, page 38816) to add new models to the Guideline on Air Quality Models. At that time EDMS was incorporated into the Guideline as an Appendix A model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号