首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

2.
Abstract

A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002–2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5–10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09–11.31 μm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

3.
Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to particulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be evaluated. During the spring study, a more robust personal exposure component was added, as well as a more detailed evaluation of physical factors, such as air-exchange rate, that are known to influence the penetration of particles into the indoor environment. In this paper, comparisons are made among measured personal PM exposures and PM mass concentrations measured at the NERL Fresno Platform site, outside on the premises of the retirement facility, and inside selected residential apartments at the facility during the two 28-day study periods. The arithmetic daily mean personal PM2.5 exposure during the winter study period was 13.3 micrograms/m3, compared with 9.7, 20.5, and 21.7 micrograms/m3 for daily mean overall apartment, outdoor, and ambient (i.e., platform) concentrations, respectively. The daily mean personal PM2.5 exposure during the spring study period was 11.1 micrograms/m3, compared with 8.0, 10.1, and 8.6 micrograms/m3 for the daily mean apartment, outdoor, and ambient concentrations, respectively.  相似文献   

4.
ABSTRACT

Mobile sources are significant contributors to ambient PM2 5, accounting for 50% or more of the total observed levels in some locations. One of the important methods for resolving the mobile source contribution is through chemical mass balance (CMB) receptor modeling. CMB requires chemically speciated source profiles with known uncertainty to ensure accurate source contribution estimates. Mobile source PM profiles are available from various sources and are generally in the form of weight fraction by chemical species. The weight fraction format is commonly used, since it is required for input into the CMB receptor model. This paper examines the similarities and differences in mobile source PM2.5 profiles that contain data for elements, ions, elemental carbon (EC) and organic carbon (OC), and in some cases speciated organics (e.g., polycyclic aromatic hydrocarbons [PAHs]), drawn from four different sources.

Notable characteristics of the mass fraction data include variability (relative contributions of elements and ions) among supposedly similar sources and a wide range of average EC:OC ratios (0.60 ± 0.53 to 1.42 ± 2.99) for light-duty gasoline vehicles (LDGVs), indicating significant EC emissions from LDGVs in some cases. For diesel vehicles, average EC:OC ratios range from 1.09 ± 2.66 to 3.54 ± 3.07. That different populations of the same class of emitters can show considerable variability suggests caution should be exercised when selecting and using profiles in source apportionment studies.  相似文献   

5.
Abstract

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

6.
Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM)(2.5) were measured over two-weeks in a cohort of 5-6 year old children (n=334) living in New York City's Northern Manhattan and the Bronx between October 2005 and April 2010. The objectives were to: 1) characterize seasonal changes in indoor and outdoor levels and indoor/outdoor (I/O) ratios of PAH (gas + particulate phase; dichotomized into Σ(8)PAH(semivolatile) (MW 178-206), and Σ(8)PAH(nonvolatile) (MW 228-278)), Abs, and PM(2.5); and 2) assess the relationship between PAH and ozone. Results showed that heating compared to nonheating season was associated with greater Σ(8)PAH(nonvolatile) (p<0.001) and Abs (p<0.05), and lower levels of Σ(8)PAH(semivolatile) (p<0.001). In addition, the heating season was associated with lower I/O ratios of Σ(8)PAH(nonvolatile) and higher I/O ratios of Σ(8)PAH(semivolatile) (p<0.001) compared to the nonheating season. In outdoor air, Σ(8)PAH(nonvolatile) was correlated negatively with community-wide ozone concentration (p<0.001). Seasonal changes in emission sources, air exchanges, meteorological conditions and photochemical/chemical degradation reactions are discussed in relationship to the observed seasonal trends.  相似文献   

7.
ABSTRACT

Diesel particulate matter (PM) is a significant contributor to ambient air PM10 and PM2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.  相似文献   

8.
Abstract

In response to community concerns, the air quality impact of imploding a 22-story building in east Baltimore, MD, was studied. Time- and space-resolved concentrations of indoor and outdoor particulate matter (PM) (nominally 0.5–10 µm) were measured using a portable nephelometer at seven and four locations, respectively. PM10 levels varied in time and space; there was no measurable effect observed upwind of the implosion. The downwind peak PM10 levels varied with distance (54,000–589 µg/m3) exceeding pre-implosion levels for sites 100 and 1130 m 3000- and 20-fold, respectively. Estimated outdoor 24-hr integrated mass concentrations varied from 15 to 72 µg/m3. The implosion did not result in the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standard (NAAQS) for PM10 being exceeded. X-ray fluorescence analysis indicated that the elemental composition was dominated by crustal elements: calcium (57%), silicon (23%), aluminum (7.6%), and iron (6.1%). Lead was above background but at a low level (0.17 µg/m3). Peak PM10 concentrations were short-lived; most sites returned to background within 15 min. No increase in indoor PM10 was observed even at the most proximate 250 m location. These results demonstrate that a building implosion can have a severe but short-lived impact on community air quality. Effective protection is offered by being indoors or upwind.  相似文献   

9.
A study on source apportionment of indoor dust and particulate matter (PM10) composition was conducted in a university building by using chemometrics. The objective of this study was to investigate the potential sources of selected heavy metals and ionic species in PM10 and indoor dust. PM10 samples were collected using a low-volume sampler (LVS) and indoor dust was collected using a soft brush. Inductively coupled plasma spectrometry (ICP-MS) was used to determine the concentration of heavy metals, while the concentration of cations and anions was determined by atomic absorption spectrometer (AAS) and ion chromatography (IC), respectively. The concentration of PM10 recorded in the building throughout the sampling period ranged from 20 ± 10 μgm?3 to 80 ± 33 μgm?3. The composition of heavy metals in PM10 and indoor dust were dominated by zinc (Zn), followed by lead (Pb), copper (Cu), and cadmium (Cd). Principle component analysis (PCA) and multiple linear regression (MLR) showed that the main sources of pollutants in PM10 came from indoor renovations (73.83%), vehicle emissions (16.38%), earth crust sources (9.68%), and other outdoor sources (0.11%). For indoor dust, the pollutant source was mainly earth crust. This study suggests that chemometrics can be used for forensic investigation to determine the possible sources of indoor contaminants within a public building.  相似文献   

10.
ABSTRACT

Five identical, collocated, low-volume samplers were operated to collect airborne particulate matter less than 2.5 microns (PM25). Five commercially available filter types were installed in the samplers to compare the gravimetric determination of PM2.5 concentrations in the atmosphere. The filters were rotated through the five samplers for two study periods—one in summer and one in winter. The study was performed in Sheridan, WY, in close proximity to a gravimetric laboratory to minimize the introduction of errors associated with sample handling. Rigorous quality assurance procedures were employed throughout the study.Four of the five filter types provided comparable gravimetric determinations of airborne PM2.5.  相似文献   

11.
ABSTRACT

Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects.

Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.  相似文献   

12.
ABSTRACT

Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency (EPA)-sponsored 1998 Baltimore and 1999 Fresno PM exposure studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly (>65 years old) subjects. Integrated 24-hr filter-based PM2.5 or PM10 mass measurements [using Personal Environmental Monitors(PEMs)] included personal measurements, indoor and outdoor residential measurements, and measurements at a central indoor site and a community monitoring site. A subset of the participants in each study wore passive nephelometers that continuously measured (1-min averaging time) particles ranging in size from 0.1 to ~10 um. Significant activities and locations were identified by a statistical mixed model (p < 0.01) for each study population based on the measured PM2.5 or PM10 mass and time activity data. Elevated PM concentrations were associated with traveling (car or bus), commercial locations (store, office, mall, etc.), restaurants, and working.

The modeled results were compared to continuous PM concentrations determined by the nephelometers while participants were in these locations. Overall, the nephelometer data agreed within 6% of the modeled PM2.5 results for the Baltimore participants and within ~20% for the Fresno participants (variability was due to zero drift associated with the nephelometer). The nephelom-eter did not agree as well with the PM10 mass measurements, most likely because the nephelometer optimally responds to fine particles (0.3–2 um). Approximately one-half (54 ± 31%; mean ± standard deviation from both studies) of the average daily PM2.5 exposure occurred inside residences, where the participants spent an average of 83 ± 10% of their time. These data also showed that a significant portion of PM2.5 exposure occurred in locations where participants spent only 4–13% of their time.  相似文献   

13.
Abstract

This article develops an empirical relationship between the British Smoke (BS) measurement, coefficient of haze (CoH), and Total Suspended Particulate Matter (TSP) for London winter periods of the early 1950s and 1960s. A bounded nonlinear model of form BS = TSP3 / (TSP2 + [200 μg/m3]2 ) fits the available BS/TSP data and meets the urban boundary conditions that BS0 as TSP0, and BSTSP as TSP→∞. A derivation is presented for the form of the equation from basic principles. Equations of a similar form may be useful on a site- and season-specific basis for developing relations between other fractions of PM.  相似文献   

14.
Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

15.
It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10-2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children's Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

16.
ABSTRACT

Several studies conducted in U.S. cities report an association between acute exposures to particulate matter (PM), usually measured as PM10, and mortality. Evidence of high concentrations of PM10 in Eastern Europe and in large metropolitan areas outside of the United States, such as Mexico City and Bangkok, underscores the need to determine whether these same associations occur outside of the United States. In addition, conducting studies of mortality and air pollution in regions that have distinctly different seasonal patterns than those of the United States provides an effective opportunity to assess the potentially confounding aspects of seasonality. Over the last few years, daily measures of ambient PM10 have been collected in Bangkok, a tropical city of over 6 million people. In this metropolitan area, PM10 consists largely of fine particles generated from diesel- and gasoline-powered automobiles, and from two-stroke motorcycle engines. Our analysis involved the examination of the relationship between PM10 and daily mortality for 1992 through 1995. In addition to counts of daily natural mortality (total mortality net of accidents, homicides, and suicides), the data were compiled to assess both cardiovascular and respiratory mortality, and natural mortality by age group. A multivariate Poisson regression model was used to explain daily mortality while controlling for several covariates including temperature, humidity, day of the week, season, and time. The analysis indicated a statistically significant association between PM10 and all of the alternative measures of mortality. The results suggest a 10-µg/m3 change in daily PM10 is associated with a 1–2% increase in natural mortality, a 1–2% increase in cardiovascular mortality, and a 3–6% increase in respiratory mortality. These relative risks are generally consistent with or greater than those reported in most studies undertaken in the United States.  相似文献   

17.
An examination of the available toxicological literature indicates that sulfur dioxide itself would be properly classified as a mild respiratory irritant, the main portion of which is absorbed in the upper respiratory tract. The reported industrial experience of symptoms of mild chronic respiratory irritation from exposures at or above 5 ppm is compatible with what would have been predicted on the basis of available toxicological data. The basic physiological response to inhalation of pure SO2 appears to be a mild degree of bronchoconstriction reflected in a measurable increase in flow resistance. Although the response is highly variable, most individuals tested have responded to 5 ppm and levels of 5 to 10 ppm have upon occasion produced severe bronchospasm in sensitive individuals. This serves to point up the fact that experience with the industrial Threshold Limit Value (5 ppm) is not applicable as a guide for the general population. Although the majority of individuals tested have shown no detectable response to levels of 1 ppm, there are again sensitive individuals who have responded. It is not known whether these individuals would have responded to concentrations lower than this. The response of these more sensitive individuals to 1 ppm would be classified as detectable response, not as severe bronchospasm. An examination of the available toxicological literature also indicates that sulfuric acid and irritant sulfates, to the extent that the latter have been examined, are more potent irritants than sulfur dioxide. This has been demonstrated in studies using morality and lung pathology as criteria as well as in studies using alterations in pulmonary function in experimental animals and human subjects. The irritant potency of these substances is affected by particle size and by relative humidity, which factors are probably interrelated. It is unfortunate that these substances have not been as yet studied in as great detail as has the less irritant sulfur dioxide. There is evidence which cannot be ignored, even though it is based entirely on animal experiments of one investigator, indicating that the presence of particulate material capable of oxidizing sulfur dioxide to sulfuric acid caused a three to fourfold potentiation of the irritant response. The aerosols causing this potentiation were soluble salts of ferrous iron, manganese and vanadium all of which would become droplets upon inhalation. Insoluble aerosols such as carbon, iron oxide fume, triphenylphosphate or fly ash did not cause a potentiation of the irritant action of SO2 even when used at higher concentrations. The concentrations of SO2 used in these various experiments were in some cases as low as 0.16 ppm. The catalytic aerosols were used at concentrations of 0.7 to 1 mg/m3 which is above any reported levels of these metals in urban air. If the SO2 present as an air pollutant remained unaltered until removed by dilution, there would be no evidence in the toxicological literature suggesting that it would be likely to have any effects on man at prevailing levels. Studies of atmospheric chemistry have shown that SO2 does not remain unaltered in the atmosphere, especially under onditions of high humidity and in the presence of particulate material, but is converted to H2SO4. Such a conversion increases its irritant potency. On this basis the toxicological literature combined with the literature of atmospheric chemistry suggest that sulfur dioxide levels be controlled in terms of the potential formation of irritant particles. This means that control measures as far as feasible should be aimed at both SO2 and particulate material and not against either alone.  相似文献   

18.
19.
ABSTRACT

Measurements of 15-min average PM2.5 concentrations were made with a real-time light-scattering instrument at both outdoor (central monitoring sites in three communities) and indoor (residential) locations over two seasons in the Minneapolis-St. Paul metropolitan area. These data are used to examine within-day variability of PM2.5 concentrations indoors and outdoors, as well as matched indoor-to-outdoor (I/O) ratios. Concurrent gravimetric measurements of 24-hr average PM2.5 concentrations were also obtained as a way to compare real-time measures with this more traditional metric. Results indicate that (1) within-day variability for both indoor and outdoor 15-min average PM2.5 concentrations was substantial and comparable in magnitude to day-to-day variability for 24hr average concentrations; (2) some residences exhibited substantial variability in indoor aerosol characteristics from one day to the next; (3) peak values for indoor short-term (15-min) average PM2.5 concentrations routinely exceeded 24-hr average outdoor values by factors of 3-4; and (4) relatively strong correlations existed between indoor and outdoor PM2.5 concentrations for both 24-hr and 15-min averages.  相似文献   

20.
Abstract

The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 μm (PM10) and less than 2.5 μm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号