首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the results of continuous measurements of trace atmospheric gases and aerosol composition made at the summit of Whiteface Mountain, New York, for 28 days in July 1982. The gas phase species NO, NOx ( = NO + NO2 + PAN), HNO3, SO2 and NH3 were measured, as well as aerosol SO42−, NO3, H+ and NH4+. Mean and median NOx concentrations were 1.1 and 1.0 ppb, respectively, with maximum and minimum values of 3.2 and 0.3 ppb. HNO3 concentrations were variable, occasionally exceeding the simultaneously measured NOx levels. Mean and median SO2 were 0.8 and 0.3 ppb, with concentrations up to 12 ppb in pollution episodes. Mean and median NH3 were both 2.2 ppb. Monthly mean SO42− was 5.3 μg m−3, with values in clean air of about 1.5 μg m−3, and in polluted air up to 80 μg m−3. Trajectory calculations indicate that episodes of high pollutant concentrations occur in air masses arriving at Whiteface from the southwest. These episodes contributed most of the SO42−, HNO3 and aerosol acidity, and about half the SO2 and NOx to which the site was exposed during the measurement period. Limited comparisons of air chemistry data with the composition of cloudwater collected during the program are also presented.  相似文献   

2.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

3.
Measurements of ammonia and particulate ammonium were made in the daytime (1200–1500) at a urban site in Yokohama during the 5-year period, 1982–1986. Diurnal NH3 concentrations showed a distinct seasonal trend with a maximum in summer. The diurnal monthly average concentrations were above 10 ppb during the late spring and summer months, while the concentrations during the winter months were between 1 and 5 ppb. The seasonal variation was found to be very similar to that of the average air temperature and showed a periodic pattern over 1 year. A good correlation was observed between diurnal NH3 concentrations and average air temperatures during the 5-year period. The annual mean concentrations were in the range of 6.6–7.6 ppb with only a minor deviation. The diurnal monthly average concentrations of particulate NH4+ were between 1 and 4 μg m−3 and no significant seasonal variations were seen. As a short-term study, simultaneous measurements of NH3, HNO3 and particulate NO3 were made. The diurnal mean concentrations of NH3 and HNO3 were 7.6 and 0.8 ppb, respectively. The concentration of particulate NO3 ranged from 0.3 to 6μg−3. Both HNO3 and particulate NO3 concentrations were relatively low and constant. Thus, NH3 and HNO3 levels did not agree with the concentrations predicted from the NH4NO3 equilibrium constant.  相似文献   

4.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

5.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

6.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

7.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

8.
Vertical concentration profiles for NH3, HNO3 and HCl-gas and for NH4+, NO3, SO2−4, Cl and Na+ aerosol were obtained from a meteorological tower in the central part of the Netherlands. An upward NH3 flux of 0.12 μgm−2 s−1 was calculated from the NH3 profiles and meteorological data. From the HNO3 profiles a maximum HNO3 dry deposition velocity of 4 cm s−1 was calculated. Good agreement was found between the measured concentration products [NH3](g) × [HNO3](g) and the theoretical values at temperatures above 0°C and relative humidities below 80%. In other cases, higher NH3 and/or HNO concentrations in the gas phase were measured than theoretically predicted.  相似文献   

9.
The aerosol equilibrium formulation of Stelson and Seinfeld (1982a, b, Atmospheric Environment16, 983–992, 993–1000) is incorporated into the STEM-II transport/chemistry model and is evaluated against NH3, HNO3 and aerosol NH4+ and NO3 measured at Nagano Prefecture, Japan on 29 and 30 July 1983. These results indicate that this modeling approach is useful in analyzing field data.  相似文献   

10.
Nitric acid and ammonium-containing particulate species were measured by the annular denuder-filter pack technique at Manndorf, a rural site in South Germany, in July 1990. The analyses of filter packs indicated that nitrate was present as ammonium salt which mostly dissociated during sampling. Moreover, due to the NH+4/NO3 ratios higher than unity found in back-up filters, NH4Cl was assumed to represent an appreciable fraction of the total particulate ammonium. Finally, the molar ratios NH+4/SO2−4 found on front (Teflon) filters, suggested a large predominance of (NH4)2SO4 among the different forms of sulphate. The concentration levels of gaseous HNO3 observed in the daytime were characterised by a maximum after midday, whereas particulate nitrate showed five times out of eight days an opposite trend with early afternoon minima. The total nitrate (HNO3+NH4NO3) showed in turn a diurnal pattern similar to that of sulphate. These findings led to the conclusion that a significant HNO3 production pathway involved the thermal dissociation of NH4NO3 rather than the reaction of NO2 with OH radical.  相似文献   

11.
12.
13.
Airborne gaseous and particulate matter in winter was measured over for 37 days in January and December 1997 at 2 sampling sites in northern Kyushu, Japan. One sampling site, Goto Island (an isolated island in the East China Sea), was about 200 km southwest of the other sampling site, Dazaifu city. In winter, acidic sulfates generated over the East Asian continent were transported to northwest Kyushu, to places such as Goto Island and the inland Kyushu area, and high sulfate concentrations were observed at the 2 sampling sites when strong NW winds blew. Acidity around Goto was mainly influenced by particulate NH4HSO4. The concentrations of NH3 at Goto Island were lower than at Dazaifu city. The difference in NH3 levels at the 2 sampling sites plays an important role in the chemical forms and sizes of the particulate matter. Nitrates at Goto Island were mostly present as NaNO3 and Ca(NO3)2 in coarse-size particles. During the process of long-range transport of air pollutants from the Asian continent to Goto, gaseous HNO3 was produced by a photochemical reactions of nitrogen oxides in the atmosphere, and particulate NaNO3 and gaseous HCl were formed by a chlorine-loss reaction between NaCl and gaseous HNO3. When strong NW winds blew, acidic sulfates together with some of the NaNO3 and/or Ca(NO3)2 and some of gaseous HCl and HNO3, which exist in the sea to the west of Kyushu and Goto Island, were transported to inland Kyushu such as Dazaifu city. During the process of transport, most of the acidic sulfates and acidic gases were mixed with regional air pollutants such as chlorides and nitrates existing around Dazaifu city, and neutralized forming (NH4)2SO4, NH4Cl and NH4NO3 in an environment of excess NH3. Therefore, the main chemical forms of NO3 at Dazaifu city varied day-by-day from fine-sized NH4NO3 to coarse-sized NaNO3 and/or Ca(NO3)2. The appearance of NO3 in coarse-size particles at Dazaifu city was due to the transport of NO3 from around the sea to the west of Kyushu.  相似文献   

14.
TSP and PM2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, F?, Cl?, NO3?, and SO42?). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH4+, K+, F?, Cl?, NO3?, and SO42? were more abundant in PM2.5 than TSP but the opposite was true for Mg2+ and Ca2+. PM collected on hazy days was enriched with secondary species (NH4+, NO3?, and SO42) while PM from straw combustion showed high K+ and Cl?. Firework displays caused increases in K+ and also enrichments of NO3? relative to SO42?. During DSs, the concentrations of secondary aerosol components were low, but Ca2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO42?/K+, NO3?/SO42?, and Cl?/K+) proved effective as indicators for different pollution episodes.  相似文献   

15.
Abstract

Air pollutants were collected in Logan, Cache County, UT, in February 1993 during two periods of atmospheric inversion accompanied by fog. The following atmospheric species were determined: (1) gaseous SO2, NO2 (semi-quantitatively),HNO3, NH3, and HF; (2) fine particulate SO4 =, NO3 -, NH4 +, F–, H+, C, Si, S, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Pb, Se, Br, and Sr, and; (3) fine particulate mass, which was calculated. The major components of fine particulate matter were carbonaceous material, ammonium nitrate, and ammonium sulfate, while the soil component was small. Calculated, fine particulate mass averaged 80 μg/m3 and reached concentrations as high as 120 μg/m3. SO2/Sox and NO2/NOy mole ratios generally varied between 0.2 and 0.1 during inversions. These ratios also showed moderate but consistent diurnal patterns. The emission inventory for Cache County indicates sources of SO2 and NOx but not significant amounts of primary sulfate and nitrate. The observations reported here indicate there is significant conversion of SO2 and NOx in the presence of excess oxidants to sulfuric and nitric acid that are neutralized by excess ammonia.  相似文献   

16.
Abstract

Ambient air quality data were analyzed to empirically evaluate the effects of reductions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx) emissions on weekday and weekend levels of ozone (O3; 1991–1998) and particulate NO3 - (1980–1999) in southern California. Despite significantly lower O3 precursor levels on weekends, 20 of 28 South Coast Air Basin (SoCAB) sites (28 of all 78 southern California sites) showed statistically significant higher mean O3 levels on Sundays than on weekdays (p < 0.01); 49 of the remaining 50 sites showed no significant differences between mean weekday and Sunday peak O3 levels. We also observed no statistically significant differences between mean weekday and weekend concentrations of particulate NO3 - or nitric acid (HNO3, the precursor of particulate NO3 -). Averaged over sites, the mean Sunday NOx and nonmethane hydrocarbon concentrations were 25–41% and 16–30% lower, respectively, than on weekdays. Site-to-site differences between weekend and weekday mean peak hourly O3 levels were related to whether O3 formation was limited by the availability of NOx. A thermodynamic equilibrium model predicts that particulate NO3 - levels would decrease in response to a reduction of HNO3, and that particulate ammonium NO3 - formation was not limited by the availability of ammonia. The similarity of mean weekday and weekend levels of NO3 - therefore did not result from limitations on the formation of particulate NO3 - from its precursor, HNO3.  相似文献   

17.
The data set of N and S compound measurements from WATOX-85 has been examined in detail to assess that data quality and suitability for use in addressing the goals of the Western Atlantic Ocean Experiment. Accuracy estimates for particulate SO42− and NO3, SO2 and HNO3 have been made on the basis of the investigators' estimates and the results of intercomparisons. Intercomparisons of ground-based particulate SO42− and all filter SO2 and HNO3 measurements show them to be consistent with the 20% accuracies quoted by the investigators. Ground-based particulate NO3 and aircraft particulate SO42− show inconsistencies such that the accuracies can be no better than 28% and the aircraft particulate NO3 has an accuracy of no better than 60%.  相似文献   

18.
The concentrations at the 1–100 ng g−1 level of seven major ions (H+, SO42−, NO3, Cl, Na+, NH4+ and K+) of South Pole snow were determined in 100 samples representing the continuous time period 1959–1969. The ionic balance in South Polar snow is achieved for the first time and the existence of the three strong mineral acids H2SO4, HNO3 and HCl is demonstrated. It is found that NH4+ concentrations are an order of magnitude less than that of acid species. With the aid of the clear seasonal patterns exhibited by the depth profiles of several of the measured ions, we review the different natural sources contributing to the aerosol at the South Pole: These include sea spray, volcanoes, biogenic activity and nitrogen fixation.  相似文献   

19.
The equilibrium between gaseous ammonia, nitric acid, and aerosol nitrate is discussed on the basis of a recent field experiment in southern California. Comparison is drawn between theoretical equilibrium calculations and simultaneous measurements of nitric acid, ammonia, ammonium ion, nitrate ion, sulfate ion, other ionic species, temperature and dewpoint. Particulate and gaseous pollutant concentrations at some inland sampling sites are readily explained if the aerosol is assumed to exist as an external mixture with all particulate nitrate and ammonium available to form pure NH4NO3. At other monitoring sites, especially near the coast, aerosol nitrate is found in the presence of NH3 and HNO3 concentrations that thermodynamic calculations show are too low to produce pure NH4NO3. This can be explained when the amount of aerosol nitrate that can be derived from reaction of nitric acid with sea salt and soil dust is taken into account. A calculation approach that accounts for the presence of mixed sulfate and nitrate salts improves the agreement between predicted and observed pollutant concentrations in the majority of cases studied. Uncertainties in these calculations arise from a number of sources including the thermodynamic quantities, and the effect of these uncertainties on the comparison between theory and experiment is discussed.  相似文献   

20.
Measurements of gas-phase nitric acid were made by four separate techniques during a 7-day summertime period at a near-coastal site on Long Island, NY. Results from methods intercomparison data for HNO3, and their relationship to particulate NO3 and other odd N and oxidant species show the following: (a) high-volume filter pack HNO3 concentrations are well correlated with diffusion denuder difference (DD) results, except for small absolute losses with the former; (b) daytime real-time two-channel chemiluminescence HNO3 levels correlated well with DD results, but were higher during night-time periods; (c) results by a new Al2(SO4)3 denuder/thermal evolution technique were not in agreement with other techniques. Based on HNO3 and paniculate NO3 results reported herein, it appears that negative errors in HNO3filter-sampling techniques resulting from HNO3 loss by sorption generally exceed positive errors NH4NO3 volatilization at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号