首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The follow-up of a cohort of adults from 29 European centers of the former European Community Respiratory Health Survey (ECRHS) I (1989-1992) will examine the long-term effects of exposure to ambient air pollution on the incidence, course, and prognosis of respiratory diseases, in particular asthma and decline in lung function. The purpose of this article is to describe the methodology and the European-wide quality control program for the collection of particles with 50% cut-off size of 2.5 microm aerodynamic diameter (PM2.5) in the ECRHS II and to present the PM2.5 results from the winter period 2000-2001. Because PM2.5 is not routinely monitored in Europe, we measured PM2.5 mass concentrations in 21 participating centers to estimate background exposure in these cities. A standardized protocol was developed using identical equipment in each center (U.S. Environmental Protection Agency Well Impactor Ninety-Six [WINS] and PQ167 from BGI, Inc.). Filters were weighed in a single central laboratory. Sampling was conducted for 7 days per month for a year. Winter mean PM2.5 mass concentrations (November 2000-February 2001) varied substantially, with Iceland reporting the lowest value (5 microg/m3) and northern Italy the highest (69 microg/m3). A standardized procedure appropriate for PM2.5 exposure assessment in a multicenter study was developed. We expect ECRHS II to have sufficient variation in exposure to assess long-term effects of air pollution in this cohort. Any bias caused by variation in the characteristics of the chosen monitoring location (e.g., proximity to traffic sources) will be addressed in later analyses. Given the homogenous spatial distribution of PM2.5, however, concentrations measured near traffic are not expected to differ substantially from those measured at urban background sites.  相似文献   

2.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

3.
Total number concentrations, number concentrations of ultrafine (0.01–0.1 μm) and accumulation (0.1–0.5 μm) particles, as well as mass concentration of PM2.5 particles and blackness of PM2.5 filters, which is related to Black Smoke were simultaneously monitored in three European cities during the winter period for three and a half months. The purpose of the study was to describe the differences in concentration levels and daily and diurnal variations in particle number and mass concentrations between European cities. The results show statistically significant differences in the concentrations of PM2.5 and the blackness of the PM2.5 filters between the cities, but not in the concentrations of ultrafine particles. Daily PM2.5 levels were found to be poorly correlated with the daily total and ultrafine number concentrations but better correlated with the number concentration of accumulation particles. According to the principal component analysis airborne particulate pollutants seem to be divided into two major source categories, one identified with particle number concentrations and the other related to mass-based information. The present results underline the importance of using both particle number and mass concentrations to evaluate urban air quality.  相似文献   

4.
Emission measurement programmes were carried out at industrial plants in several regions of Germany to determine the fine dust in the waste gases; the PM10, PM2.5 and PM1.0 fractions were sampled using a cascade impactor technique. The installations tested included plants used for: combustion (brown coal, heavy fuel oil, wood), cement production, glass production, asphalt mixing, and processing plants for natural stones and sand, ceramics, metallurgy, chemical production, spray painting, wood processing/chip drying, poultry farming and waste treatment. In addition waste gas samples were taken from small-scale combustion units, like domestic stoves, firing lignite briquettes or wood.In total 303 individual measurement results were obtained during 106 different measurement campaigns. In the study it was found that in more than 70% of the individual emission measurement results from industrial plants and domestic stoves the PM10 portion amounted to more than 90% and the PM2.5 portion between 50% and 90% of the total PM (particulate matter) emission. For thermal industrial processes the PM1.0 portion constituted between 20% and 60% of the total PM emission.Typical particle size distributions for different processes were presented as cumulative frequency distributions and as frequency distributions. The particle size distributions determined for the different plant types show interesting similarities and differences depending on whether the processes are thermal, mechanical, chemical or mixed. Consequently, for the groups of plant investigated, a major finding of this study has been that the particle size distribution is a characteristic of the industrial process. Attempts to correlate particle size distributions of different plants to different gas cleaning technologies did not lead to usable results.  相似文献   

5.
Fine particles in urban atmospheres contain substantial quantities of semi-volatile material [e.g., NH4NO3 and semi-volatile organic compounds (SVOCs)] that are lost from particles during collection on a filter. Several diffusion denuder samplers have been developed for the determination of both NO3- and organic semi-volatile fine particulate components. The combination of technology used in the BOSS diffusion denuder sampler and the Harvard particle concentrator has resulted in the Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) for the 24-hr (or less) integrated collection of PM2.5, including NH4NO3 and semi-volatile organic material. Modification of the BOSS sampler allows for the weekly determination of these same species. Combination of BOSS denuder and tapered element oscillating microbalance (TEOM) monitor technology has resulted in the real-time ambient mass sampler (RAMS) for the continuous measurement of PM2.5, including the semi-volatile components. Comparison of the results obtained with the BOSS and with each of the newly developed modifications of the BOSS indicates that the modified versions can be used for the continuous, daily, or weekly monitoring of PM2.5, including semi-volatile species, as appropriate to the design of each sampler.  相似文献   

6.
It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10-2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children's Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

7.
The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study at 219 non-smoking homes (once or twice) in Los Angeles County, CA, Elizabeth, NJ, and Houston, TX. Fourier transform infrared (FTIR) spectra of PM2.5 samples were collected, and FG absorbances were quantified by partial least squares (PLS) regression, a multivariate calibration method.There is growing evidence in the literature that a large majority of indoor-generated PM2.5 is organic. The current research suggests that indoor-generated PM2.5 is enriched in aliphatic carbon–hydrogen (CH) FGs relative to ambient outdoor PM2.5. Indoor-generated CH exceeded outdoor-generated CH in 144 of the 167 homes for which indoor or outdoor CH was measurable; estimated indoor emission rates are provided. The strong presence of aliphatic CH FGs in indoor PM2.5 makes particulate organic matter substantially less polar indoors and in personal exposures than outdoors. This is a substantial new finding. Based on the quantified FGs, the average organic molecular weight (OM) per carbon weight (OC), a measure of the degree of oxygenation of organic PM, is in the range of 1.7–2.6 for outdoor samples and 1.3–1.7 for indoor and personal samples. Polarity or degree of oxygenation effects particle deposition in exposure environments and in the respiratory system.  相似文献   

8.
提出了一种利用移动监测技术研究区域大气环境中PM2.5/PM10空间分布的方法,并在2004年12月进行了宁波市全市域PM2.5/PM10空间分布的研究。数据显示:相同路径所代表的地区PM2.5和PM10具有很好的相关性,多数路径上PM2.5与PM10数据的相关系数平方在0.95以上,而不同路径上PM2.5与PM10的比值不同。文中给出了宁波市PM2.5/PM10污染的空间分布图,直观地显示出PM2.5/PM10污染的空间分布情况,突出了污染的重点点位和地区。  相似文献   

9.
Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

10.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

11.
The purpose of the present study is to analyze the elemental composition and the concentrations of PM10 and PM2.5 in the Guaíba Hydrographic Basin with HV PM10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m−3, respectively) set by the Brazilian legislation were not observed.  相似文献   

12.
The elemental composition of PM10−2.5 and PM2.5 were studied in winter, summer, stormy and non-stormy dates during a period extending from February 2004 till January 2005, in a populated area of Beirut. Results of PIXE analysis and enrichment factor (E.F.) calculation, using Si as a reference of crustal material, showed that crustal elements (E.F.<10) like Si, Ca, K, Ti, Mn and Fe were more abundant in PM10−2.5 while enriched elements (E.F.>10) like S, Cu, Zn and Pb predominated in PM2.5. In PM10−2.5, concentrations of crustal elements increased during stormy episodes, all time high Ca concentrations were due to the abundance of calcite and limestone rocks in Lebanon, and increased Cl levels correlated with marine air masses. In PM2.5, sulfur concentrations were more prominent in the summer due to the enhancement of photochemical reactions. Sources of sulfur were attributed to local, sea-water and long-range transport from Eastern Europe, with the latter being the most predominate. Anthropogenic elements like Cu and Zn were generated from worn brakes and tires in high traffic density area and spikes of Pb were directly linked to a southerly wind originated from Egypt and/or Israel as determined by the air trajectory HYSPLIT model. In brief, elemental variations depended on the regional variability of the transport pattern and the different removal rates of aerosols.  相似文献   

13.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

14.
分析了2015年南京市PM2.5和PM10的浓度特征和大致来源类型。PM2.5和PM10的年均浓度分别为56.6 μg·m-3和96.5 μg·m-3,污染水平较高。颗粒物浓度的季节变化特征一致:冬 > 春 > 秋 > 夏;PM2.5的日变化呈"单峰单谷"型,而PM10的呈"单峰双谷"型。颗粒物浓度在城区高于郊区;植被茂盛区域的浓度较低。对PM2.5/PM10而言,比值在冬季和梅雨期较大,分别受取暖和降水的影响;比值在春季和夏末秋初较小,分别受沙尘和秸秆焚烧的影响。PM2.5多为二次颗粒物,PM10多为一次颗粒物;固定污染源对PM2.5的间接贡献和对PM10的直接贡献较移动污染源而言更大。  相似文献   

15.
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM2.5 and PM10) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM2.5 and PM10 fractions were collected using a dichotomous sampler (10 L min?1, 24 h) with Teflon? filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM2.5 in 2009) was 0.99 ng m?3 (NHV) and 3.3 ng m?3 (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m?3 and 0.12 ng m?3 for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaPeq), where the overall toxicity of a PAH mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaPeq median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m?3 and 1.2–1.4 ng m?3 for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m?3, related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern.  相似文献   

16.
天津冬季PM2.5与PM10中有机碳、元素碳的污染特征   总被引:2,自引:0,他引:2  
研究了天津冬季PM2.5和PM10中碳成分的污染特征.结果表明,天津冬季PM2.5和PM10的平均质量浓度分别为(124.4±60.9)、(224.6±131.2)μg/m3;总碳(TC)、有机碳(OC)与元素碳(EC)在PM2.5中的平均质量分数比在PM10中分别高出5.0%、3.6%、1.2%;PM2.5中OC、EC的相关系数较高,为0.95,表明OC、EC的来源相对简单,可能主要反应了燃煤和机动车尾气的贡献.OC/EC的平均值在PM2.5和PM10中分别为3.9、4.9.次生有机碳(SOC)在PM2.55和PM10中的平均质量浓度分别为14.9、23.4/μg/m3,分别占OC的48.5%(质量分数,下同)、49.8%,OC/EC较高可能主要与直接排放源有关;PM2.5中的OC1与OC2的比例明显高于PM10,而聚合碳(OPC)的比例又低于PM10,同时PM2.5与PM10中的EC1含量均较高,表明天津冬季燃煤取暖和机动车尾气是重要的污染源.  相似文献   

17.
Ambient monitored data at Santiago, Chile, are analyzed using box models with the goal of assessing contributions of different economic activities to air pollution levels. The box modeling approach was applied to PM10, PM2.5 and coarse (PM10–PM2.5) particulate matter (PM) fractions; the period analyzed is 1989–1999. A linear model for each PM fraction was obtained, having as independent variables CO and SO2 concentrations, plus a term proportional to (wind speed)−1 that lumps together non-combustion emissions and secondary generation terms; wet scavenging is included as another independent variable. Model identification results show good agreement for the different parameters across monitoring stations. The washout ratios and scavenging coefficients agree with data published in the literature, being higher for the coarse PM fraction. The CO and SO2 coefficients fitted for 1989–1995 agree with a priori estimates for the same period. Background estimates for the PM fractions are in agreement with measurement campaigns in upwind sites. Results show that transportation sources have become the dominant contributors to ambient PM levels, while stationary sources have decreased their contributions in the last years. The relative importance of mobile sources to PM2.5 ambient concentrations has doubled in the last 10 years, whereas stationary sources have reduced their relative contributions to half the value in the early 1990s. Model estimates of regional background of PM2.5 and PM10 have decreased 50% and 22% in the last decade, respectively; coarse background has shown no significant change. The final conclusion is that there is room and need for a more intensive emission reduction strategy for Santiago, focusing on mobile sources. The approach pursued in this work is feasible for cities or regions where comprehensive, transport and chemistry models are not available yet, but estimates of air quality contributions are needed for policy purposes. The methodology requires data on ambient air quality measurements and surface meteorology.  相似文献   

18.
Environmental Science and Pollution Research - In 2019, PM2.5 and PM1.0 samples were collected in Harbin City, Heilongjiang Province, China, to research their mass concentration, number...  相似文献   

19.
20.
The concentrations of monosaccharide anhydrides (levoglucosan, mannosan, galactosan) in PM1 and PM2.5 aerosol samples were measured in Brno and ?lapanice in the Czech Republic in winter and summer 2009. 56 aerosol samples were collected together at both sites to investigate the different sources that contribute to aerosol composition in studied localities. Daily PM1 and PM2.5 aerosol samples were collected on pre-fired quartz fibre filters.The sum of average atmospheric concentration of levoglucosan, mannosan and galactosan in PM1 aerosol in ?lapanice and Brno during winter was 513 and 273 ng m?3, while in summer the sum of average atmospheric concentration of monosaccharide anhydrides (MAs) was 42 and 38 ng m?3, respectively. The sum of average atmospheric concentration of MAs in PM1 aerosol formed 71 and 63% of the sum of MA concentration in PM2.5 aerosol collected in winter in ?lapanice and Brno, whereas in summer the sum of average atmospheric concentration of MAs in PM1 aerosol formed 45 and 43% of the sum of MA concentration in PM2.5 aerosol in ?lapanice and Brno, respectively.In winter, the sum of MAs contributed significantly to PM1 mass ranging between 1.37% and 2.67% of PM1 mass (Brno – ?lapanice), while in summer the contribution of the sum of MAs was smaller (0.28–0.32%). Contribution of the sum of MAs to PM2.5 mass is similar both in winter (1.37–2.71%) and summer (0.44–0.55%).The higher concentrations of monosaccharide anhydrides in aerosols in ?lapanice indicate higher biomass combustion in this location than in Brno during winter season. The comparison of levoglucosan concentration in PM1 and PM2.5 aerosol shows prevailing presence of levoglucosan in PM1 aerosol both in winter (72% on average) and summer (60% on average).The aerosol samples collected in ?lapanice and Brno in winter and summer show comparable contributions of levoglucosan, mannosan and galactosan to the total amount of monosaccharide anhydrides in both aerosol size fractions. Levoglucosan was the most abundant monosaccharide anhydride with a relative average contribution to the total amount of MAs in the range of 71–82% for PM1 aerosols and 52–79% for PM2.5 aerosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号