首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: In an earlier paper [1], the invariant imbedding concept was applied to the dynamic modeling of stream quality. In this approach, a set of weighting functions is introduced. The initial conditions for these weighting functions must be estimated. It has been found that these initial conditions influence the convergence rate tremendously. In many water quality control situations, the number of experimental data points are limited. In order to obtain the best estimates with limited experimental data, the best convergence rate should be used. In this work, the least squares criterion combined with various optimization techniques is ued to obtain the optimal initial conditions for the weighting functions. It is shown that the proposed schemes greatly improve the convergence rate.  相似文献   

2.
ABSTRACT: Regional hydrologic procedures such as generalized least squares regression and streamflow record augmentation have been advocated for obtaining estimates of both flood-flow and low-flow statistics at ungaged sites. While such procedures are extremely useful in regional flood-flow studies, no evaluation of their merit in regional low-flow estimation has been made using actual streamflow data. This study develops generalized regional regression equations for estimating the d-day, T-year low-flow discharge, Qd, t, at ungaged sites in Massachusetts where d = 3, 7, 14, and 30 days. A two-parameter lognormal distribution is fit to sequences of annual minimum d-day low-flows and the estimated parameters of the lognormal distribution are then related to two drainage basin characteristics: drainage area and relief. The resulting models are general, simple to use, and about as precise as most previous models that only provide estimates of a single statistic such as Q7,10. Comparisons are provided of the impact of using ordinary least squares regression, generalized least squares regression, and streamflow record augmentation procedures to fit regional low-flow frequency models in Massachusetts.  相似文献   

3.
ABSTRACT: This paper presents criteria for establishing the identification status of the inverse problem for confined aquifer flow. Three linear estimation methods (ordinary least squares, two-stage least squares, and three-stage least squares) and one nonlinear method (maximum likelihood) are used to estimate the matrices of parameters embedded in the partial differential equation characterizing confined flow. Computational experience indicates several advantages of maximum likelihood over the linear methods.  相似文献   

4.
ABSTRACT: In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.  相似文献   

5.
ABSTRACT: Model estimation and prediction of a river flow system are investigated using nonlinear system identification techniques. We demonstrate how the dynamics of the system, rainfall, and river flow can be modeled using NARMAX (Nonlinear Autoregressive Moving Average with eXogenuous input) models. The parameters of the model are estimated using an orthogonal least squares algorithm with intelligent structure detection. The identification of the nonlinear model is described to represent the relationship between local rainfall and river flow at Enoree station (inputs) and river flow at Whitmire (output) for a river flow system in South Carolina.  相似文献   

6.
ABSTRACT Significant parameters for predicting thunderstorm runoff from small semiarid watersheds are determined using data from the Walnut Gulch watershed in southern Arizona. Based on these data, thunderstorm rainfall is dominant over watershed parameters for predicting runoff from multiple linear regression equations. In some cases antecedent moisture added significantly to the models. A technique is developed for estimating precision of predicted values from multiple linear regression equations. The technique involves matrix methods in estimating the variance of mean predicted values from a regression equation. The estimated variance of the mean predicted value is then used to estimate the variance of an individual predicted value. A computer program is developed to implement these matrix methods and to form confidence limits on predicted values based on both a normality assumption and the Chebyshev inequality.  相似文献   

7.
ABSTRACT: A common framework for the analysis of water resources systems is the input-parameter-output representation. The system, described by its parameters, is driven by inputs and responds with outputs. To calibrate (estimate the parameters) models of these systems requires data on both inputs and outputs, both of which are subject to random errors. When one is uncertain as to whether the predominant source of error is associated with inputs or outputs, uncertainty also exists as to the correct specification of a calibration criterion. This paper develops and analyzes two alternative least squares criteria for calibrating a numerical water quality model. The first criterion assumes that errors are associated with inputs while the second assumes output errors. Statistical properties of the resulting estimators are examined under conditions of pure input or output error and mixed error conditions from a theoretical perspective and then using simulated results from a series of Monte Carlo experiments.  相似文献   

8.
ABSTRACT: The parameters of the extreme value type 1 distribution were estimated for 55 annual flood data sets by seven methods. These are the methods of (1) moments, (2) probability weighted moments, (3) mixed moments, (4) maximum likelihood estimation, (5) incomplete means, (6) principle of maximum entropy, and (7) least squares. The method of maximum likelihood estimation was found to be the best and the method of incomplete means the worst. The differences between the methods of principle of maximum entropy, probability weighted moments, moments, and least squares were only minor. The difference between these methods and the method of maximum likelihood was not pronounced.  相似文献   

9.
ABSTRACT: For a set of 81 catchments in southeast Victoria, Australia, predictive equations were developed by least squares regression of the mean and coefficient of variation of annual Streamflow against a variety of rainfall and physiographic parameters. The data were also divided into subsets according to catchment size, subregion, or record length of investigate if the relationships differed significantly between subsets. Only the catchment area and some rainfall statistical parameters were found to be significant. Streamflow parameters predicted by the regression equations were used to estimate storage requirements in ungauged catchments. The influence of errors in the Streamflow parameters on the storage error was examined.  相似文献   

10.
In this study, a constrained minimization method, the flexible tolerance method, was used to solve the optimization problems for determining hydrologic parameters in the root zone: water uptake rate, spatial root distribution, infiltration rate, and evaporation. Synthetic soil moisture data were first generated using the Richards' equation and its associated initial and boundary conditions, and these data were then used for the inverse analyses. The results of inverse simulation indicate the following. If the soil moisture data contain no noise, the rate of estimated water uptake and spatial root distribution parameters are equal to the true values without using constraints. If there is noise in the observed data, constraints must be used to improve the quality of the estimate results. In the estimation of rainfall infiltration and surface evaporation, interpolation methods should be used to reduce the number of unknowns. A fewer number of variables can improve the quality of inversely estimated parameters. Simultaneous estimation of spatial root distribution and water uptake rate or estimation of evaporation and water uptake rate is possible. The method was used to estimate the water uptake rate, spatial root distribution, infiltration rate, and evaporation using long‐term soil moisture data collected from Nebraska's Sand Hills.  相似文献   

11.
刘晓东 《四川环境》2006,25(5):18-21,40
本文建立了连续点源和瞬时点源两种常见排污工况下河流污染带的特征参数预测模型,模型预测的污染带特征参数包括污染物达到全断面均匀混合的距离、污染带最大长度、最大宽度及其出现的位置、污染带面积等,并能利用污染带的特征参数反演推算允许排污量和削减量。模型所用方法简便易行,且具有较高精度,可用于常规连续排污和突发事故排污情况下的河流污染带预测。在此基础上,研制开发了河流污染带特征参数预测系统(RPZS),方便实用。  相似文献   

12.
ABSTRACT: In this study the estimation of parameters in water quality models represented by linear first order partial differential equations is investigated. Two sets of simulated input-output data, one with input noise and the other with output measurement error, were used. The parameters were estimated by a gradient technique (Bard's method) and a pattern search technique. The results indicate that the output measurement error significantly affects the values of parameter estimates as compared to the noise added to the input. Bard's method consistently gave results with a smaller sum of square value.  相似文献   

13.
ABSTRACT: Growing interest in water quality has resulted in the development of monitoring networks and intensive sampling for various constituents. Common purposes are regulatory, source and sink understanding, and trend observations. Water quality monitoring involves monitoring system design; sampling site instrumentation; and sampling, analysis, quality control, and assurance. Sampling is a process to gather information with the least cost and least error. Various water quality sampling schemes have been applied for different sampling objectives and time frames. In this study, a flow proportional composite sampling scheme is applied to variable flow remote canals where the flow rate is not known a priori. In this scheme, historical weekly flow data are analyzed to develop high flow and low flow sampling trigger volumes for auto‐samplers. The median flow is used to estimate low flow sampling trigger volume and the five percent exceedence probability flow is used for high flow sampling trigger volume. A computer simulation of high resolution sampling is used to demonstrate the comparative bias in load estimation and operational cost among four sampling schemes. Weekly flow proportional composite auto‐sampling resulted in the least bias in load estimation with competitive operational cost compared to daily grab, weekly grab sampling and time proportional auto‐sampling.  相似文献   

14.
Stochastic models fitted to hydrologic data of different time scales are interrelated because the higher time scale data (aggregated data) are derived from those of lower time scale. Relationships between the statistical properties and parameters of models of aggregated data and of original data are examined in this paper. It is also shown that the aggregated data can be more accurately predicted by using a valid model of the original data than by using a valid model of the aggregated data. This property is particularly important in forecasting annual values because only a few annual values are usually available and the resulting forecasts are relatively inaccurate if models based only on annual data are used. The relationships and forecasting equations are developed for general aggregation time and can be used for hourly and daily, daily and monthly or monthly and yearly data. The method is illustrated by using monthly and yearly streamflow data. The results indicate that various statistical characteristics and parameters of the model of annual data can be accurately estimated by using the monthly data and forecasts of annual data by using monthly models have smaller one step ahead mean square error than those obtained by using annual data models.  相似文献   

15.
ABSTRACT: A regression analysis using a generalized least squares approach on flow data from the driftless area of Wisconsin indicates that the ratio of drainage area to time-to-peak is a good predictor of flood quantiles. The estimation of time-to-peak (or some other measure of basin response time) requires direct measurement of river stage and possibly rainfall at the site of which the quantiles are to be estimated. The cost-effectiveness of such an approach must yet be determined.  相似文献   

16.
17.
宜宾市酸雨pH值预测的偏最小二乘回归分析   总被引:2,自引:0,他引:2  
酸雨pH值受酸性离子(有机酸、无机酸)和碱性离子的影响。这些影响因素之间存在多重相关性。用一般最小二乘回归法建模预测pH值,估计参数存在着很大的误差,而且物理意义明显不足。本文以宜宾市区2002-2003年的27组降雨监测数据作为样本数据,应用偏最小二乘回归技术建立pH值预测模型,克服了自变量之间的多重相关性的问题。与最小二乘回归法相比更具有先进性,计算结果更为可靠;在确定了模型可行性后,分析比较了影响宜宾市区酸雨pH值的离子的重要性和离子来源。  相似文献   

18.
Sampling scheme design is an important step in the management of polluted sites. It largely controls the accuracy of remediation cost estimates. In practice, however, sampling is seldom designed to comply with a given level of remediation cost uncertainty. In this paper, we present a new technique that allows one to estimate of the number of samples that should be taken at a given stage of investigation to reach a forecasted level of accuracy. The uncertainty is expressed both in terms of volume of polluted soil and overall cost of remediation. This technique provides a flexible tool for decision makers to define the amount of investigation worth conducting from an environmental and financial perspective. The technique is based on nonlinear geostatistics (conditional simulations) to estimate the volume of soil that requires remediation and excavation and on a function allowing estimation of the total cost of remediation (including investigations). The geostatistical estimation accounts for support effect, information effect, and sampling errors. The cost calculation includes mainly investigation, excavation, remediation, and transportation. The application of the technique on a former smelting work site (lead pollution) demonstrates how the tool can be used. In this example, the forecasted volumetric uncertainty decreases rapidly for a relatively small number of samples (20-50) and then reaches a plateau (after 100 samples). The uncertainty related to the total remediation cost decreases while the expected total cost increases. Based on these forecasts, we show how a risk-prone decision maker would probably decide to take 50 additional samples while a risk-averse decision maker would take 100 samples.  相似文献   

19.
Abstract: A nine‐layered confined‐unconfined flow and transport model is developed for the Alamitos saltwater intrusion barrier in Southern California. The conceptual model is based on the geological structure of the coastal aquifer system. The key parameters in the flow and transport models are calibrated using a two‐phase procedure which matches the types of data available for calibration. Because of the abundance of point measurements of hydraulic conductivity, the heterogeneous and random hydraulic conductivity field for each of the five aquifers is estimated by the geostatiscal method of natural‐neighbor‐kriging in Phase 1. In Phase 2, the longitudinal and transverse dispersivities in the transport model are estimated by a traditional inverse procedure that minimizes the least‐squares error for concentration (LSE‐CON). The minimum LSE‐CON is achieved near 15.2 and 1.52 m for the longitudinal and transverse dispersivities, respectively. Additional simulations with increasing transport parameter complexity did not yield significant improvements in LSE‐CON. Also, tracking least‐squares error for head while parametrically varying the transport parameters revealed there is a negligible interaction between predicted head and transport parameters.  相似文献   

20.
An important class of models, frequently used in hydrology for the forecasting of hydrologic variables one or more time periods ahead, or for the generation of synthetic data sequences, is the class of autoregressive(AR) models. As the AR models belong to the family of linear stochastic difference equations, they have both a deterministic and a stochastic component. The stochastic component is often assumed to have a Gaussian distribution. It is well known that hydrologic observations (e.g., stream flows) are heavily affected by noise. To account explicitly for the observation noise, the linear stochastic difference equation is expressed in state variable form and an observation model is introduced. The discrete Kalman filter algorithm can then be used to obtain estimates of the state variable vector. Typically, in hydrologic systems, model parameters, system noise statistics and measurement noise statistics are unknown, and have to be estimated. In this study an adaptive algorithm is discussed which estimates these quantities simultaneously with the state variables. The performance of the algorithm is evaluated by using simulated data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号