首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.  相似文献   

2.
In order to contribute to current knowledge of ozone concentrations and transport across the Central Massif, a monitoring station was installed at 1780 m on the upper Spanish plateau about 55 km from the city of Madrid. Ozone concentrations and standard meteorological variables were measured in June and July 2002. A smoothed ozone hourly cycle was obtained with mean values of 120 and 110 microgm(-3) during day-time and night-time, respectively. The highest ozone concentrations were recorded in the SE-S-SW wind sectors, proving the influence of transport from the Madrid urban plume to the upper plateau. This assumption was also supported by the satisfactory correlation between ozone peaks obtained at the monitoring site and those recorded in a representative station on the foothill located on the lower plateau during episodic situations. To assess the contribution of long-range transport, backward air mass trajectories were computed each day of measurements at 820 hPa. The lowest ozone mean was linked to Atlantic Ocean air masses, and the highest to air masses from Central Europe.  相似文献   

3.
A systematic analysis of surface ozone observations in rural areas surrounding Athens is presented. The analysis is based on ozone data for the rural station Aliartos about 80 km NW of Athens center and for two stations on the northern periphery of the Athens basin: Demokritos, located 10 km NE of Athens center and Liossia, 12 km to the north. The data for these two stations are screened for cases of strong air flow from rural areas. Average hourly summer afternoon ozone mixing ratios are similar for all three stations about 60 ppb and thus exceed for the hours 12:00–20:00 LST the 55 ppb WHO guideline for human health for 8 h ozone exposure. The corresponding winter afternoon mixing ratios are at 35 ppb. However, due to the large diurnal variation, mean monthly ozone mixing ratios at Aliartos, for the months April–September vary from 32 to 40 ppb, which is comparable to the higher average ozone levels at rural stations in south-central Europe. In cases of southerly air flow in the summer in the Athens basin, afternoon ozone levels at Demokritos and Liossia are generally the highest of any in the monitoring network. Hourly average concentrations, however, are only 40% greater than rural values. A background ozone level of such magnitude will have a significant impact on estimates for the effectiveness of pollution control measures for Athens.  相似文献   

4.
Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.  相似文献   

5.
This analysis represents the first characterization of the photochemistry and transport of ozone in the Detroit metropolitan area and provides a basis for comparing data for Detroit to that for other cities. The characterization is based on a comprehensive set of meteorological and chemical measurements obtained at a site in the urban core of Detroit during the summer of 1981, together with measurements of O3, nitrogen oxides (NO X ), and nonmethane organic compounds (NMOC) from rural, suburban, and urban areas in southeastern Michigan and adjacent areas of Ontario.

For the quartile (23 days) with highest ozone maxima (97-180 ppb), the maxima occurred 10-70 km north-northeast of the city on days that were warm and hazy with light southsouthwest winds. On such days there was a marked accumulation of ozone precursors (NMOC and NOX) in the early morning, as well as a rapid chemical removal of NO X (NO X half-life of ~5 h) from morning to midday. The timing of the daily ozone increase across the study region suggests that local photochemical generation in a moving plume was responsible for more than half of the ozone measured downwind. However, there was also evidence that ozone transported into Detroit as part of the regional background was a significant part of the O3 maxima on high ozone days. The average contributions of photochemistry and transport for the 23 days with the highest ozone maxima were estimated to be 57 ppb and 47 ppb, respectively.  相似文献   

6.
An innovative and effective method using isentropic trajectory analysis based on the residence time of air masses over the polluted region of Europe was successfully applied to categorize surface ozone amounts at Arosa, Switzerland during 1996–1997. The “European representative” background ozone seasonal cycle at Arosa is associated with long-range transport of North Atlantic air masses, and displays the spring maximum–summer minimum with an annual average of 35 ppb. The photochemical ozone production due to the intense large-scale anthropogenic emission over Europe is estimated as high as 20 ppb in summer, whereas it is insignificant in winter. European sources contribute an annual net ozone production of 9–12 ppb at Arosa. Comparison with the selected regional representative site in Western Europe shows similar results indicating that the categorized ozone data at Arosa by this technique could be regarded as a representative for northern hemispheric mid-latitudes.  相似文献   

7.
A data set for studying transport and dispersion in complex terrain was collected at the Westvaco Corporation's Luke Mill, located in the Potomac River valley in western Maryland. Meteorological analyses indicate very strong channeling of winds and the presence of strong inversions and wind shears in a shallow layer at the height of the surrounding mountaintops (300 m above the valley floor). Wind velocities observed near the valley floor are unrepresentative of wind velocities at plume height. Observed turbulence intensities at plume height are about twice as large as those observed over flat terrain. Standard stability classification schemes generally underestimate plume dispersion at this site. When high 3-h and 24-h average SO2 concentrations are observed, winds are usually light and an inversion is present. These instances of relatively high concentrations are often associated with periods when the wind shifts direction 180° from up-valley to down-valley or vice versa, and the nearly stagnant polluted air mass blows against the mountainsides.A dispersion model was developed that is Gaussian in form but uses observed meteorological data to the maximum extent possible. For example, observed turbulence intensities at plume height are used to estimate dispersion. Plume impaction on terrain is calculated if the plume height is below a critical height dependent on the Hill Froude number. Evaluation of the model with the full 2-y data set shows that it can estimate the second highest 3-h and 24-h average concentrations (of regulatory significance) with a mean bias of less than 7%.  相似文献   

8.
Large day-to-day variability in O3 and CO was observed at Chongming, a remote rural site east of Shanghai, in August 2010. High ozone periods (HOPs) that typically lasted for 3?C5?days with daily maximum ozone exceeding 102?ppb were intermittent with low ozone periods (LOPs) with daily maximum ozone less than 20?ppb. The correlation analysis of ozone with meteorological factors suggests that the large variations of surface ozone are driven by meteorological conditions correlated with the changes in the location and intensity of the west Pacific subtropical high (WPSH) associated with the East Asian summer monsoon (EASM). When the center of WPSH with weaker intensity is to the southeast of Chongming site, the mixing ratios and variability of surface ozone are higher. When the center of WPSH with stronger intensity is to the northeast of Chongming site, the mixing ratios and variability of surface ozone are lower. Sensitivity simulations using the GEOS-Chem chemical transport model indicate that meteorological condition associated with WPSH is the primary factor controlling surface ozone at Chongming in August, while local anthropogenic emissions make significant contributions to surface ozone concentrations only during HOP.  相似文献   

9.
Ozone concentration data measured in 1977–1979 and 1981–1983 at rural sites in north-west England have been analysed in relation to elevated concentrations. Overall, concentrations exceed 60 ppb on 11.2% of days, 80 ppb on 4.2% of days and reach levels in excess of 100 ppb on 1.5% of days monitored. It is concluded that photochemical pollution is the most frequent cause of elevated concentrations, and that both long-range (continental) and middle-distance (U.K. urban) sources contribute. On a smaller percentage of days, elevated ozone levels arise from enhanced intrusions of stratospheric air associated with vigorous frontal activity. The meteorological situations associated with tropospheric photochemical ozone formation are summer anticyclonic conditions, in common with other observations in the U.K. and other parts of the world.  相似文献   

10.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   

11.
Measurements of chemical species and meteorological parameters were made at a site located 440 m above the mean basin level of Mexico City, over a two-week period in November during Project Azteca. Data from three of the stations of Mexico City's air quality monitoring network (Red Automática de Monitoreo Ambiental, RAMA) were also used to estimate the dilution in concentration experienced by pollutants as they are transported upslope during the course of the day. Both carbon monoxide and sulfur dioxide show a dilution of up to 50%, while ozone is usually more concentrated at the elevated site. These comparisons clearly highlight the intrinsic differences between primary and secondary gases, which are supported also by time–space, cross correlation analysis. The thermal mesoscale wind circulation dominates concentrations of pollutants at the research site: upslope during the day and downslope during the night. The data present clear evidence that downslope flows during the night contribute to ozone concentration at basin sites.  相似文献   

12.
The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study – Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west–northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50–60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O3 that peaked at 120 ppbv at a short distance (15–25 km) downwind of Nashville. Ozone productivity (the ratio of excess O3 to NOy and NOz) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.  相似文献   

13.
Large petrochemicalflares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulfof Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employedfine horizontal resolution (200 mx200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 kmx12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to approximately 8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.  相似文献   

14.
In this paper ozone measurements carried out at six alpine and prealpine sites, located in the Italian region of Central Alps are shown. The stations are placed at altitudes between 800 and 1900 m a.s.l., far away from local sources of pollution. Ozone concentrations appear to be quite uniform, with summer mean values varying from 40 to 47 ppb and winter ones from 19 to 35 ppb. The number of hours exceeding the 75 and 100 ppb WHO thresholds and the AOT40 (Average Over Threshold 40 ppb of ozone) are evaluated for the growing season. The temporal variability of weekly ozone cycle at alpine stations provides useful informations to assess an emission control strategy.  相似文献   

15.
Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.  相似文献   

16.
Ambient air concentrations of specific C2–C6 hydrocarbons (HCs) are reported for various days during the summer months of 1983. The samples are classified as either urban, rural or polluted rural according to the sampling site, meteorological conditions and ozone levels. Generally, both the concentrations and HC/acetylene ratios are similar to those reported by other workers for comparable sites. The alkane/alkene ratio at the rural site exceeded that for the urban site and it is concluded that the major contribution to HCs at the former site is advection from distant sources. It appears that the main source of propane in rural areas is natural gas, with about 4.5–9 ppbC unaccounted for by this source.  相似文献   

17.
The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and high humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique, used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (U.S. Environmental Protection Agency [EPA] Air Quality System [AQS] Site ID: 48-201-0024, Aldine) in the HGB area. This site, located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990–2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000 and 2016. This pattern could be partially attributed to a reduction in underlying nitrogen oxide (NOx) emissions, particularly lowering nitrogen dioxide (NO2) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOCs). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), whereas 64% of the change in long-term MDA8 ozone post 2000 could be attributed to NOx emission reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000–2016 and 0.155 ± 0.005 ppb/yr for the overall period of 1990–2016.

Implications: The effectiveness of air emission controls can be evaluated by developing long-term air quality trends independent of meteorological influences. The KZ filter technique is a well-established method to separate an air quality time series into short-term, seasonal, and long-term components. This paper applies the KZ filter technique to MDA8 ozone data between 1990 and 2016 at an urban site in the greater Houston area and estimates the variance accounted for by the primary meteorological control variables. Estimates for linear trends of MDA8 ozone are calculated and underlying causes are investigated to provide a guidance for further investigation into air quality management of the greater Houston area.  相似文献   


18.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

19.
The ambient air quality monitoring data of 2006 and 2007 from a recently established Pearl River Delta (PRD) regional air quality monitoring network are analyzed to investigate the characteristics of ground-level ozone in the region. Four sites covering urban, suburban, rural and coastal areas are selected as representatives for detailed analysis in this paper. The results show that there are distinct seasonal and diurnal cycles in ground-level ozone across the PRD region. Low ozone concentrations are generally observed in summer, while high O3 levels are typically found in autumn. The O3 diurnal variations in the urban areas are larger than those at the rural sites. The O3 concentrations showed no statistically significant difference between weekend and weekdays in contrast to the findings in many other urban areas in the world. The average ozone concentrations are lower in urban areas compared to the sites outside urban centers. Back trajectories are used to show the major air-mass transport patterns and to examine the changes in ozone from the respective upwind sites to a site in the center of the PRD (Wanqingsha). The results show higher average ozone concentrations at the upwind sites in the continental and coastal air masses, but higher 1 h-max O3 concentrations (by 8–16 ppbv) at the center PRD site under each of air-mass category, suggesting that the ozone pollution in the PRD region exhibits both regional and super-regional characteristics.  相似文献   

20.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号