首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 x 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.  相似文献   

2.
We describe the first experimental evaluation of a non-overlapping radial beam geometry to map air pollutants using computed tomography (CT) and optical remote sensing (ORS) instruments. Nitrous oxide was released from a point source inside a 11 m long×5.4 m wide ventilation chamber. An open path Fourier transform infrared (OP-FTIR) spectrometer gathered path integrated concentration data. The smooth basis function minimization (SBMF) CT algorithm was applied to a radial geometry with 19 rays. Two-dimensional maps were reconstructed from the OP-FTIR measurements and compared with kriged maps calculated from 13-point samples collected simultaneously during the experiments. The CT reconstructions showed good agreement compared to the kriged maps obtained from point samples (concordance correlation factor >0.55). The CT reconstructions also located the peak concentration within 1.2 m compared to the point samplers. In contrast to the complex CT beam geometries proposed in the past, the development of this radial scanning configuration could broaden the application of CT to many optical remote sensing instruments.  相似文献   

3.
Abstract

This paper presents the simulation and field evaluation results of two approaches to localize pollutant emission sources with open-path Fourier transform infrared (OPFTIR) spectroscopy. The first approach combined the plume’s peak location information reconstructed from the Smooth Basis Function Minimization (SBFM) algorithm and the wind direction data to calculate source projection lines. In the second approach, the plume’s peak location was determined with the Monte Carlo methodology by randomly sampling within the beam segment having the largest path-integrated concentration. We first conducted a series of simulation studies to investigate the sensitivity of using different basis functions in the SBFM algorithm. It was found that fitting with the beta and Weibull basis functions generally gave better estimates of the peak locations than with the normal basis function when the plumes were mainly within the OP-FTIR’s monitoring line. However, for plumes that were symmetric to the peak position or spread over the OP-FTIR, fitting with the normal basis function gave better performance. In the field experiment, two tracer gases were released simultaneously from two locations and the OP-FTIR collected data downwind from the sources with a maximum beam path length of 97 m. For the first approach, the release locations were within the 0.25- to 0.5-probability area only after the uncertainty of the peak locations was included in the calculation process. The second approach was easy to implement and still performed as satisfactorily as the first approach. The distances from the sources to the best-fit lines (i.e., the regression lines) of the estimated locations were smaller than 10 m.  相似文献   

4.
This paper presents the simulation and field evaluation results of two approaches to localize pollutant emission sources with open-path Fourier transform infrared (OP-FTIR) spectroscopy. The first approach combined the plume's peak location information reconstructed from the Smooth Basis Function Minimization (SBFM) algorithm and the wind direction data to calculate source projection lines. In the second approach, the plume's peak location was determined with the Monte Carlo methodology by randomly sampling within the beam segment having the largest path-integrated concentration. We first conducted a series of simulation studies to investigate the sensitivity of using different basis functions in the SBFM algorithm. It was found that fitting with the beta and Weibull basis functions generally gave better estimates of the peak locations than with the normal basis function when the plumes were mainly within the OP-FTIR's monitoring line. However, for plumes that were symmetric to the peak position or spread over the OP-FTIR, fitting with the normal basis function gave better performance. In the field experiment, two tracer gases were released simultaneously from two locations and the OP-FTIR collected data downwind from the sources with a maximum beam path length of 97 m. For the first approach, the release locations were within the 0.25- to 0.5-probability area only after the uncertainty of the peak locations was included in the calculation process. The second approach was easy to implement and still performed as satisfactorily as the first approach. The distances from the sources to the best-fit lines (i.e., the regression lines) of the estimated locations were smaller than 10 m.  相似文献   

5.
This paper evaluated the feasibility of using the horizontal radial plume mapping (HRPM) technique to locate multiple emission sources via computational simulation. Seventy-two test maps, each having two Gaussian distributions, were generated in a two-dimensional domain. The HRPM technique with the non-negative least square (NNLS) algorithm was then applied to reconstruct the plumes, assuming a nine-beam scanning beam geometry. The NNLS algorithm successfully reconstructed the source locations of 68 of the 72 test maps. However, when one of the plumes was near the origin, the NNLS did not always identify the peak locations correctly. Furthermore, when the two plumes were spaced closely, the NNLS tended to reconstruct a wide plume covering both plumes instead of separating them due to the resolution limitation of the current nine-beam geometry. In the sensitivity analysis, five sets of random error (1%, 5%, 10%, 20%, and 30%) were added in the path-integrated concentration (PIC) from the 72 test maps, and thus, an additional 360 reconstructions were implemented. Robust results were obtained when the noise added was less than 20%. The results generally support the implementation of the NNLS algorithm in the HRPM technique as described in the U.S. Environmental Agency (EPA) Other Test Method 10 (OTM-10).

Implications: The methodology evaluated in this paper provides near-real-time estimates about the locations of multiple emission sources. The involved optical remote sensing instruments can monitor large spatial areas (e.g., landfills) in a cost-effective way.  相似文献   

6.
ABSTRACT

This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70° range of wind directions under extremely large measurement error conditions.  相似文献   

7.
This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70 degrees range of wind directions under extremely large measurement error conditions.  相似文献   

8.
An open-path Fourier transform infrared spectroscopy (OP-FTIR) system was set up for 3-day continuous line-averaged volatile organic compound (VOC) monitoring in a paint manufacturing plant. Seven VOCs (toluene, m-xylene, p-xylene, styrene, methanol, acetone, and 2-butanone) were identified in the ambient environment. Daytime-only batch operation mode was well explained by the time-series concentration plots. Major sources of methanol, m-xylene, acetone, and 2-butanone were identified in the southeast direction where paint solvent manufacturing processes are located. However, an attempt to uncover sources of styrene was not successful because the method detection limit (MDL) of the OP-FTIR system was not sensitive enough to produce conclusive data. In the second scenario, the OP-FTIR system was set up in an industrial complex to distinguish the origins of several VOCs. Eight major VOCs were identified in the ambient environment. The pollutant detected wind-rose percentage plots that clearly showed that ethylene, propylene, 2-butanone, and toluene mainly originated from the tank storage area, whereas the source of n-butane was mainly from the butadiene manufacturing processes of the refinery plant, and ammonia was identified as an accompanying reduction product in the gasoline desulfuration process. Advantages of OP-FTIR include its ability to simultaneously and continuously analyze many compounds, and its long path length monitoring has also shown advantages in obtaining more comprehensive data than the traditional multiple, single-point monitoring methods.  相似文献   

9.
ABSTRACT

This paper presents a new approach to localize point emissions from ground-level fugitive gaseous air pollution sources. We estimate the crosswind plume's ground-level peak location downwind from the source by combining smooth basis functions minimization (SBFM) with path-integrated optical remote sensing concentration data acquired along the crosswind direction in alternating beam path lengths. Peak location estimates, in conjunction with real-time measured wind direction data, are used to reconstruct the fugitive source location. We conducted a synthetic data study to evaluate the proposed peak location SBFM reconstruction. Furthermore, the methodology was validated with open-path Fourier transform infrared concentration data collected with wind direction data downwind from a controlled point source. This approach was found to provide reasonable estimates of point source location. The field study reconstructed source location was within several meters of the real source location.  相似文献   

10.
This paper presents a new approach to localize point emissions from ground-level fugitive gaseous air pollution sources. We estimate the crosswind plume's ground-level peak location downwind from the source by combining smooth basis functions minimization (SBFM) with pathintegrated optical remote sensing concentration data acquired along the crosswind direction in alternating beam path lengths. Peak location estimates, in conjunction with real-time measured wind direction data, are used to reconstruct the fugitive source location. We conducted a synthetic data study to evaluate the proposed peak location SBFM reconstruction. Furthermore, the methodology was validated with open-path Fourier transform infrared concentration data collected with wind direction data downwind from a controlled point source. This approach was found to provide reasonable estimates of point source location. The field study reconstructed source location was within several meters of the real source location.  相似文献   

11.
Rapid mapping of gas concentrations in air benefits studies of atmospheric phenomena ranging from pollutant dispersion to surface layer meteorology. Here we demonstrate a technique that combines multiple-open-path tunable-diode-laser spectroscopy and computed tomography to map tracer gas concentrations with approximately 0.5 m spatial and 7 s temporal resolution. Releasing CH4 as a tracer gas in a large (7 m×9 m×11 m high) ventilated chamber, we measured path-integrated CH4 concentrations over a planar array of 28 “long” (2–10 m) optical paths, recording a complete sequence of measurements every 7 s during the course of hour-long experiments. Maps of CH4 concentration were reconstructed from the long path data using a computed tomography algorithm that employed simulated annealing to search for a best fit solution. The reconstructed maps were compared with simultaneous measurements from 28 “short” (0.5 m) optical paths located in the same measurement plane. On average, the reconstructed maps capture ∼74% of the variance in the short path measurements. The accuracy of the reconstructed maps is limited, in large part, by the number of optical paths and the time required for the measurement. Straightforward enhancements to the instrumentation will allow rapid mapping of three-dimensional gas concentrations in indoor and outdoor air, with sub-second temporal resolution.  相似文献   

12.
Measuring emissions from nonuniform area sources, such as waste repository sites, has been a difficult problem. A simple but reliable method is not available. An objective method of inverting downwind concentration measurements, utilizing an assumed form of atmospheric dispersion to reconstruct total emission rate and distribution, is described in this study. The Gaussian dispersion model is compared to a more realistic model based on K-theory and similarity expressions. A sensitivity analysis is presented indicating the atmospheric conditions under which a successful application of the method could be anticipated. Field releases of sulfur hexaf luoride (SF6) from a simulated area source in flat terrain were conducted to check the method,ability to reconstruct source distribution, and total emission rate. The sensitivity analysis and the field study confirm that a few ground-level concentration measurements and a simple determination of the atmospheric dispersion characteristics are sufficient, under neutral to stable conditions, to obtain the total emission rate accurately. Reconstruction of the spatial pattern of the source is possible by utilizing concentration information from samplers located on two separate ground-level receptor lines, if a shift in the wind direction occurs and if it can be assumed that the total emission rate is time invariant. A method of cross-checking the accuracy of the reconstruction, using a simultaneous tracer release, is presented.  相似文献   

13.
In this paper we examine the effect of different roadway configurations, including noise barriers and roadway elevation or depression relative to the surrounding terrain, on the dispersion of traffic-related pollutants for winds perpendicular to the roadway. A wind tunnel experiment modeling 12 different configurations was performed to study the flow fields and the concentration distributions resulting from emissions from a simulated six-lane highway. All of the configurations examined here reduced the downwind ground-level concentrations relative to that for a flat, unobstructed roadway; however, the degree to which the concentrations were reduced varied widely depending on the particular situation.Ground-level concentration data from the cases considered in this research indicate that a constant entrainment velocity can be used over the region beginning downwind of any initial disturbance to the flow resulting from the roadway configuration (e.g., a recirculation region behind a noise barrier) and extending at least to the end of our measurements. For example, for the case of a single noise barrier on the downwind side of the road, this region extends from approximately four barrier heights downwind of the roadway to 40 barrier heights. It was also found that the virtual origin concept is useful in describing the initial mixing created by the particular roadway configuration. To effectively model the influence of the roadway configuration on the dispersion, a combination of a virtual origin and an entrainment velocity may be effective. The magnitude of the virtual origin shift appears to depend on the particular roadway configuration, while the entrainment velocity appears to be a function of the friction velocity and the roadway geometry. These results suggest that road configuration must be taken into account in modeling near-road air quality.  相似文献   

14.
This paper describes and theoretically evaluates a recently developed method that provides a unique methodology for mapping gaseous emissions from non-point pollutant sources. The horizontal radial plume mapping (HRPM) methodology uses an open-path, path-integrated optical remote sensing (PI-ORS) system in a horizontal plane to directly identify emission hot spots. The radial plume mapping methodology has been well developed, evaluated, and demonstrated. In this paper, the theoretical basis of the HRPM method is explained in the context of the method's reliability and robustness to reconstruct spatially resolved plume maps. Calculation of the condition number of the inversion's kernel matrix showed that this method has minimal error magnification (EM) when the beam geometry is optimized. Minimizing the condition number provides a tool for such optimization of the beam geometry because it indicates minimized EM. Using methane concentration data collected from a landfill with a tunable diode laser absorption spectroscopy (TDLAS) system, it is demonstrated that EM is minimal because the averaged plume map of many reconstructed plume maps is very similar to a plume map generated by the averaged concentration data. It is also shown in the analysis of this dataset that the reconstructions of plume maps are unique for the optimized HRPM beam geometry and independent of the actual algorithm applied.  相似文献   

15.
We investigate the possibility of performing tomographic pollutant mapping using path-integral data from non-intersecting optical paths, and conclude that such a geometry does allow reconstruction of the pollutant distribution with the smooth basis function minimization method. The simulated optical data are derived from actual pollutant concentration distributions determined from previous experiments.  相似文献   

16.
ABSTRACT

Researchers have applied open path optical sensing techniques to a variety of workplace and environmental monitoring problems. Usually these data are reported in terms of a path-average (or path-integrated) concentration. When assessing potential human exposures along a beam path, this path-average value is not always informative, since concentrations along the path can vary substantially from the beam average. The focus of this research is to arrive at a method for estimating the upper-bound in contaminant concentrations over a fixed open beam path. The approach taken here uses a statistical model to estimate an upper-bound concentration based on a combination of the path-average and a measure of the spatial variability computed from point samples along the beam path. Results of computer simulations and experimental testing in a controlled ventilation chamber indicate that the model produced conservative estimates for the maximum concentration along the beam path. This approach may have many applications for open path monitoring in workplaces or wherever maximum concentrations are a concern.  相似文献   

17.
Open path Fourier transform infrared (OP-FTIR) spectroscopy is a new air monitoring technique that can be used to measure concentrations of air contaminants in real or near-real time. OP-FTIR spectroscopy has been used to monitor workplace gas and vapor exposures, emissions from hazardous waste sites, and to track emissions along fence lines. This paper discusses a statistical process control technique that can be used with air monitoring data collected with an OP-FTIR spectrometer to detect departures from normal operating conditions in the workplace or along a fence line. Time series data, produced by plotting consecutive air sample concentrations in time, were analyzed. Autocorrelation in the time series data was removed by fitting dynamic models. Control charts were used with the residuals of the model fit data to determine if departures from defined normal operating conditions could be rapidly detected. Shewhart and exponentially weighted moving average (EWMA) control charts were evaluated for use with data collected under different room air flow and mixing conditions.

Under rapidly changing conditions the Shewhart control chart was able to detect a leak in a simulated process area. The EWMA control chart was found to be more sensitive to drifts and slowly changing concentrations in air monitoring data. The time series and statistical process control techniques were also applied to data obtained during a field study at a chemical plant. A production area of an acrylonitrile, 1,3-butadiene, and styrene (ABS) polymer process was monitored in near-real time. Decision logics based on the time series and statistical process control technique introduced suggest several applications in workplace and environmental monitoring. These applications might include signaling of an alarm or warning, increasing levels of worker respiratory protection, or evacuation of a community, when gas and vapor concentrations are determined to be out-of-control.  相似文献   

18.
Researchers have applied open path optical sensing techniques to a variety of workplace and environmental monitoring problems. Usually these data are reported in terms of a path-average (or path-integrated) concentration. When assessing potential human exposures along a beam path, this path-average value is not always informative, since concentrations along the path can vary substantially from the beam average. The focus of this research is to arrive at a method for estimating the upper-bound in contaminant concentrations over a fixed open beam path. The approach taken here uses a statistical model to estimate an upper-bound concentration based on a combination of the path-average and a measure of the spatial variability computed from point samples along the beam path. Results of computer simulations and experimental testing in a controlled ventilation chamber indicate that the model produced conservative estimates for the maximum concentration along the beam path. This approach may have many applications for open path monitoring in workplaces or wherever maximum concentrations are a concern.  相似文献   

19.
Field measurements were made of greenhouse gas emissions from a wastewater treatment system using open path monitoring with detection by FTIR spectroscopy. Emission rates were determined by the ratio technique using a sulfur hexafluoride tracer gas released from a line source. As a quality control check, a second tracer gas – ethylene – was released from various single point locations. This paper presents a comparison of the line-source and point-source tracer releases for approximating emissions from the area source. The two types of tracer release showed excellent agreement when both release points were two hundred meters from the FTIR beam path. Data for other release points also were comparable, once differences in vertical dispersion as a function of distance are taken into account.  相似文献   

20.
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. Environmental Protection Agency (EPA) has developed a ground-based optical remote-sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has been the primary technique for acquisition of pollutant concentration data used in this emission measurement method. For a number of environmentally important compounds, such as ammonia and methane, open-path tunable diode laser absorption spectroscopy (OP-TDLAS) is shown to be a viable alternative to Fourier transform spectroscopy for pollutant concentration measurements. Near-IR diode laser spectroscopy systems offer significant operational and cost advantages over Fourier transform instruments enabling more efficient implementation of the measurement strategy. This article reviews the EPA's fugitive emission measurement method and describes its multipath tunable diode laser instrument. Validation testing of the system is discussed. OP-TDLAS versus OP-FTIR correlation testing results for ammonia (R2 = 0.980) and methane (R2 = 0.991) are reported. Two example applications of tunable diode laser-based fugitive emission measurements are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号