首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.  相似文献   

2.
Abstract

A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated instruments to produce multiple pollutant characterizations across a range of representative urban and rural locations in a new network referred to as the National Core Monitoring Network (NCore). The NCore parameters include carbon monoxide (CO), sulfur dioxide (SO2), reactive nitrogen (NOy), ozone (O3), and ammonia (NH3) gases and the major fine particulate matter (PM2.5) aerosol components (ions, elemental and organic carbon fractions, and trace metals). The addition of trace gas instruments, deployed at existing chemical speciation sites and designed to capture concentrations well below levels of national air quality standards, is intended to support both long-term epidemiological studies and regional-scale air quality model evaluation. In addition to designing the multiple pollutant NCore network, steps were taken to assess the current networks on the basis of spatial coverage and redundancy criteria, and mechanisms were developed to facilitate incorporation of continuously operating particulate matter instruments.  相似文献   

3.
Measuring greenhouse gas (GHG) source emissions provides data for validation of GHG inventories, which provide the foundation for climate change mitigation. Two Toyota RAV4 electric vehicles were outfitted with high-precision instrumentation to determine spatial and temporal resolution of GHGs (e.g., nitrous oxide, methane [CH4], and carbon dioxide [CO2]), and other gaseous species and particulate metrics found near emission sources. Mobile measurement platform (MMP) analytical performance was determined over relevant measurement time scales. Pollutant residence times through the sampling configuration were measured, ranging from 3 to 11 sec, enabling proper time alignment for spatial measurement of each respective analyte. Linear response range for GHG analytes was assessed across expected mixing ratio ranges, showing minimal regression and standard error differences between 5, 10, 30, and 60 sec sampling intervals and negligible differences between the two MMPs. GHG instrument drift shows deviation of less than 0.8% over a 24-hr measurement period. These MMPs were utilized in tracer-dilution experiments at a California landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Replicate landfill measurements during October 2009 yielded annual CH4 emissions estimates of 0.10 ± 0.01, 0.11 ± 0.01, and 0.12 ± 0.02 million tonnes of CO2 equivalent (MTCO2E). These values compare favorably to California GHG Emissions Inventory figures for 2007, 2008, and 2009 of 0.123, 0.125, and 0.126 MTCO2E/yr, respectively, for this facility. Measurements to quantify NGCS boosting facility-wide emissions, during June 2010 yielded an equivalent of 5400 ± 100 TCO2E/yr under steady-state operation. However, measurements during condensate transfer without operational vapor recovery yield an instantaneous emission rate of 2–4 times greater, but was estimated to only add 12 TCO2E/yr overall. This work displays the utility for mobile GHG measurements to validate existing measurement and modeling approaches, so emission inventory values can be confirmed and associated uncertainties reduced.

Implications:?Measuring greenhouse gas (GHG) source emissions provides data and validation for GHG inventories, the foundation for climate change mitigation. Mobile measurement platforms with robust analytical instrumentation completed tracer-dilution experiments in California at a landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Data collected for landfill CH4 agree with the current California emissions inventory, while NGCS data show the possible variability from this type of facility. This work displays the utility of mobile GHG measurements to validate existing measurement and modeling approaches, such that emission inventory values can be confirmed, associated uncertainties reduced, and mitigation efforts quantified.  相似文献   

4.
Exposure to traffic emission is harmful to human health. Emission inventories are essential to public health policies aiming at protecting human health, especially in areas with incomplete or nonexistent air pollution monitoring networks. In Brazil, for example, only 1.7% of municipal districts have a monitoring network, and only a few studies have reported data on vehicle emission inventories. No studies have presented emission inventories by municipality. In this study, we predicted vehicular emissions for 5570 municipal districts in Brazil during the period 2001–2012. We used a top-down method to estimate emissions. Carbon dioxide (CO2) is the pollutant with the highest emissions, with approximately 190 million tons per year during the period 2001–2012). For the other traffic-related pollutants, we predicted annual emissions of 1.5 million tons for carbon monoxide (CO), 1.2 million tons of nitrogen oxides (NOx), 209,000 tons of nonmethane hydrocarbons (NMHC), 58,000 tons of particulate matter (PM), and 42,000 tons for methane (CH4). From 2001 to 2012, CO, NMHC, and PM emissions decreased by 41, 33, and 47%, respectively, whereas those CH4, NOx, and CO2 increased by 2, 4, and 84%, respectively. We estimated uncertainties in our study and found that NOx was the pollutant with the lowest percentage difference, 8%, and NMHC with the highest one, 30%. For CO, CH4, CO2, and PM, the values were 22, 14, 21, and 20%, respectively. Finally, we found that during 2001 and 2012 emissions increased in the Northwest and Northeast. In contrast, pollutant emissions, except for CO2, decreased in the Southeast, South, and part of Midwest. Our predictions can be critical to efforts developing cost-effective public policies tailored to individual municipal districts in Brazil.

Implications: Emission inventories may be an alternative approach to provide data for air quality forecasting in areas where air quality data are not available. This approach can be an effective tool in developing spatially resolved emission inventories.  相似文献   


5.
Abstract

Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulflde (H2S) from dynamic isolation flux chambers. H2S (80–4000 ppb) and NH3 (5000–40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000–40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the full-scale sensitivity of the gas sensing equipment. The use of 46–90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.  相似文献   

6.
This paper presents a statistical model that is able to predict carbon monoxide (CO) concentrations as a function of meteorological conditions and various air quality parameters. The experimental work was conducted in an urban atmosphere, where the emissions from cars are prevalent. A mobile air pollution monitoring laboratory was used to collect data, which were divided into two groups: a development group and a testing group. Only the development dataset was used for developing the model. The model was determined by using a stepwise multiple regression modelling procedure. Thirteen independent variables were selected as inputs: non-methane hydrocarbon (NMHC), methane (CH4), suspended dust, carbon dioxide (CO2), nitrogen oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), wind speed, wind direction, temperature, relative humidity and solar energy. It was found that NO has the most effect on the predicted CO concentration. The contribution of NO to the CO concentration variations was 91.3%. Adding in the terms for NO2), NMHC and CH4 improved the model by only a further 2.3%. The derived model was shown to be statistically significant, and model predictions and experimental observations were shown to be consistent.  相似文献   

7.
Manure-based soil amendments (herein “amendments”) are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH4+) and nitrate (NO3?) concentrations every month, and GHG emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) every 7–14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO2 and N2O, and lower CH4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH4+ losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N2O emissions for all amendments. However, it did not affect CO2 or CH4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH4+ (69–96%), P (41–73%), and K (91–97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition.

Implications: The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37–74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.  相似文献   

8.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

9.
Abstract

The traditional technologies for odor removal of thiol usually create either secondary pollution for scrubbing, adsorption, and absorption processes, or sulfur (S) poisoning for catalytic incineration. This study applied a laboratory-scale radio-frequency plasma reactor to destructive percentage-grade concentrations of odorous dimethyl sulfide (CH3SCH3, or DMS). Odor was diminished effectively via reforming DMS into mainly carbon disulfide (CS2) or sulfur dioxide (SO2). The removal efficiencies of DMS elevated significantly with a lower feeding concentration of DMS or a higher applied rf power. A greater inlet oxygen (O2)/DMS molar ratio slightly improved the removal efficiency. In an O2-free environment, DMS was converted primarily to CS2, methane (CH4), acetylene (C2H2), ethylene (C2H4), and hydrogen (H2), with traces of hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl disulfide. In an O2-containing environment, the species detected were SO2, CS2, carbonyl sulfide, carbon dioxide (CO2), CH4, C2H4, C2H2, H2, formal-dehyde, and methanol. Differences in yield of products were functions of the amounts of added O2 and the applied power. This study provided useful information for gaining insight into the reaction pathways for the DMS dissociation and the formation of products in the plasmolysis and conversion processes.  相似文献   

10.
Greenhouse gas (GHG) emissions from concentrated animal feeding operations vary by stage of production and management practices. The objective of this research was to study the effect of two dietary crude protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding. Manure characteristics and GHG emissions were measured from feedlot pen surfaces. Sixteen equal-sized feedlot pens (19?×?23 m) were used. Eight were bedded approximately twice a week with corn stover and the remaining eight feedlot pens were not bedded. Angus steers (n = 138) were blocked by live weights (lighter and heavier) with 7 to 10 animals per pen. The trial was a 2?×?2 factorial design with factors of two protein levels and two bedding types (bedding vs. non bedding), with four replicates. The study was conducted from June through September and consisted of four ?28-day periods. Manure from each pen was scrapped once every 28 days and composite manure samples from each pen were collected. Air samples from pen surfaces were sampled in Tedlar bags using a Vac-U-Chamber coupled with a portable wind tunnel and analyzed with a greenhouse gas gas chromatograph within 24 hr of sampling. The manure samples were analyzed for crude protein (CP), total nitrogen (TN), ammonia (NH3), total volatile fatty acid (TVFA), total carbon (TC), total phosphorus (TP), and potassium (K). The air samples were analyzed for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations. The concentration of TN was significantly higher (p < 0.05) in manure from pens with cattle fed the high protein diets. The volatile fatty acids (VFAs) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids concentrations were similar across both treatments. There were no significant differences in pen surface GHG emissions across manure management and dietary crude protein levels.

Implications: Livestock manure produces odor and emits GHGs (CO2, CH4, and N2O) at different stages of production and management practices that have significant environmental concerns. Thus, it is important to measure GHG contributions from different sources and develop appropriate mitigation strategies for minimizing GHG contribution from livestock production facilities. Two dietary protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding were studied. The results indicated that dietary protein levels and bedding vs. no bedding had very little effect on GHG emissions and manure composition under open feedlot conditions in North Dakota climatic conditions and management practices.  相似文献   

11.
The present study was conducted within the framework of R&D activities on the development of gasification and reforming technologies for energy and chemical recovery from biomass resources. Gasification of the Japanese cedar wood has been investigated under various operating conditions in a bench-scale externally heated updraft gasifier; this was followed by thermal reforming. Parametric tests by varying the residence times, gasification temperatures, equivalence ratios (ERs) and steam-to-carbon (S/C) ratios were performed to determine their effects on the product gas characteristics. Thermodynamic equilibrium calculations were preformed to predict the equilibrium gas composition and compared with the experimental value.We found that the product gas characteristics in terms of the H2/CO ratio, CO2/CO ratio, and CH4 and lighter hydrocarbons concentrations are significantly affected by the operating conditions used. Increasing the residence time decreased the CO2/CO ratio; however, a nominal effect was noticed on H2 concentration as a function of the residence time. At sufficient residence time, increasing the temperature led to higher H2 yields, CO efficiency and higher heating value (HHV) of the product gas. The presence of steam during gasification effectively enhanced the proportion of H2 in the product gas. However, higher S/C ratio reduced the HHV of the product gas. Increasing the ER from 0 to 0.3 increased the H2 yields and CO efficiency and decreased the HHV of the product gas.The evolution of CH4 and lighter hydrocarbons at low gasification temperatures was relatively higher than that at high temperature gasification. The evolution of CH4 and lighter hydrocarbons at high gasification temperatures hardly varied over the investigated operating conditions.  相似文献   

12.

This article shows oily sawdust gasification research on countercurrent installation. Experimental research was on a laboratory scale. The main purpose of the experiment was combustible gas production with higher CH4 concentration. Gas concentrations like CO, CO2, CH4, H2, and CnHm determine syngas composition. The technological parameter’s value defines experimental conditions. Value of this was fuel to air ratio. With fuel to air ratio change, syngas composition was a differential phenomenon where it depended on the process parameters like temperature. Additionally, evaluation of methane formation from CO, H2, and CO2 was done. Methanization coefficients were based on CO and CO2 hydrogenation reactions. Component’s activity was in analogs way to syngas components changed.

  相似文献   

13.
ABSTRACT

The purpose of this research was to determine the efficiency of a polymer biocover for the abatement of H2S and NH3 emissions from an east-central Missouri swine lagoon with a total surface area of 7800 m2. The flux rate of NH3, H2S, and CH4 was monitored continuously from two adjacent, circular (d = 66 m) control and treatment plots using a nonintrusive, micrometeorological method during three independent sampling periods that ranged between 52 and 149 hr. Abatement rates were observed to undergo a temporal acclimation event in which NH3 abatement efficiency improved from 17 to 54% (p = <0.0001 to 0.0005) and H2S abatement efficiency improved from 23 to 58% (p < 0.0001) over a 3-month period. The increase in abatement efficiency for NH3 and H2S over the sampling period was correlated with the development of a stable anaerobic floc layer on the bottom surface of the biocover that reduced mass transfer of NH3 and H2S across the surface. Analysis of methanogenesis activity showed that the biocover enhanced the rate of anaerobic digestion by 25% when compared with the control. The biocover-enhanced anaerobic digestion process was shown to represent an effective mechanism to counteract the accumulation of methanogenic substrates in the biocovered lagoon.  相似文献   

14.
Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on wet weight basis. The fresh biomass and the amount of carbon on the ground before burning were estimated as 528 t ha?1 and 147 t ha?1, respectively. The overall biomass consumption for the experiment was estimated as 23.9%. A series of experiment in the same region resulted in average efficiency of 40% for areas of same size and 50% for larger areas. The lower efficiency obtained in the burn reported here occurred possibly due to rain before the experiment. Excess mixing ratios were measured for CO2, CO, CH4, C2–C3 aliphatic hydrocarbons, and PM2.5. Excess mixing ratios of CH4 and C2–C3 hydrocarbons were linearly correlated with those of CO. The average emission factors of CO2, CO, CH4, NMHC, and PM2.5 were 1,599, 111.3, 9.2, 5.6, and 4.8 g kg?1 of burned dry biomass, respectively. One hectare of burned forest released about 117,000 kg of CO2, 8100 kg of CO, 675 kg of CH4, 407 kg of NMHC and 354 kg of PM2.5.  相似文献   

15.
This study characterized the seasonal concentration (C) and emission (E) patterns of odor, ammonia (NH3), and hydrogen sulfide (H2S) over the course of a whole year and their diurnal patterns in cold, warm, and mild seasons for a naturally ventilated free-stall dairy barn. It was found that seasonal odor and NH3 and H2S emissions varied greatly: from 17.2 to 84.4 odor units (OU) sec?1 AU?1 (AU: animal unit, 500 kg of animal body mass), from 0.27 to 0.92 mg sec?1 AU?1, and from 3 to 105 μg sec?1 AU?1, respectively. The overall concentrations of odor and NH3 were higher in the winter, whereas the emissions were higher in the mild and warm seasons. Diurnal variation was most significant for odor emission (OE) in the mild season when the ratio of maximum (279.2 OU sec?1 AU?1) to minimum value (60.5 OU sec?1 AU?1) was up to 4.6. The indoor air quality was also evaluated by considering not only the health effect of individual gases, but also the additive effect of NH3 and H2S. Results showed that the indoor air quality was poorest in cold seasons when NH3 C could exceed the threshold limit set out in occupational health regulation, and in fact could worsen due to the additive effect of the two gases. Further, it was suggested NH3 was a good indicator for predicting odor concentration (OC) or OE. The impact of climatic parameters on odor and gases were also examined, and it was found ventilation rate (VR) negatively affected OC and NH3 C, but positively impacted OE and NH3 E. Using 70% of the total data, a multilinear model for OE was developed as a function of VR and indoor relative humidity and was validated to be acceptable using the rest of the data.

Implications: Diurnal and seasonal variations of odor, NH3, and H2S concentrations and emissions were monitored for a naturally ventilated dairy barn in a cold region. The emission factors were calculated and indoor air quality was evaluated. The overall odor and NH3 concentrations were higher in winter, whereas emissions were higher in the mild and warm seasons. Diurnal variation was most significant for odor emission in the mild season, when the ratio of maximum to minimum value was up to 4.6. The results can be used to estimate odor and gas emissions from other dairy barns in Canada and other cold regions.  相似文献   

16.
Abstract

The purpose of this study was to develop a technology that can convert biogas to synthesis gas (SynGas), a low-emission substituted energy, using a non-thermal-pulsed plasma method. To investigate the characteristics of Syn-Gas production from simulated biogas, the reforming characteristics in relation to variations in pulse frequency, biogas component ratio (C3H8/CO2), vapor flow ratio (H2O/total flow rate [TFR]), biogas velocity, and pulse power were studied. A maximum conversion rate of 49.1% was achieved for the biogas when the above parameters were 500 Hz, 1.5, 0.52, 0.32 m/sec, and 657 W, respectively. Under the above conditions, the dry basis mole fractions of the SynGas were as follows: H2 = 0.645,CH4 = 0.081, C2H2 = 0.067, C3H6 = 0.049, CO = 0.008 and C2H4 = 0.004. The ratio of hydrogen to the other intermediates in the SynGas (H2/ITMs) was 3.1.  相似文献   

17.
The concentrations of respirable suspended particulates (PM10), fine suspended particulates (PM2.5) and nitrogen dioxide (NO2) were measured in various locations over the territory of Hong Kong. In order to study the contributions of these pollutants from motor vehicles and their characteristics, the attention was focused on the roadside, street-level concentrations. A statistical analysis of the sampling results was conducted to obtain general characteristics of the roadside particulate and nitrogen dioxide pollution and to investigate the effects of traffic volume and meteorological factors on the pollution levels. High correlation coefficients are found between PM10, PM2.5 and NO2 concentration.  相似文献   

18.
An AEI-MS9 high resolution mass spectrometer interfaced with a PDP-12 digital computer has been adapted for the multicomponent analysis of air pollutants. Air sampling techniques for particulate and gaseous pollutants have been developed which are compatible with the mass spectrometric system. A single stage impactor has been designed for sampling particulate matter of particle diameters greater than 1–2 μm. The remainder of the particulate matter is collected on a glass fiber filter. Gaseous pollutants are collected on a styrene-divinylbenzene copolymer (Chromosorb 102).

The particulate samples are introduced directly into the mass spectrometer utilizing a temperature programed insertion probe. Gaseous pollutants are desorbed from the copolymer directly into the mass spectrometer by heating. Analysis of composite mass spectral data is facilitated through the use of a digital computer utilizing newly developed computer programs. Final computer output yields qualitative and quantitative results for up to 300 pollutants. Organic pollutants identified in particulate matter include polycyclic aromatic compounds, alkyl chlorides, polychlorinated aromatics, substituted benzenes and organic acids. Composite quantitative results are reported for alkanes and alkenes in the following groups: C15-C30, C30-C50 and Cso-polymeric. Inorganic pollutants identified include As4O6, H2SO4/ (NH4)2SO4, (NH4)2SO3, NaHSO4, NH4NO3/ NaNO3, NH4CI, SeO2, I2, elemental sulfur, and elemental cadmium.  相似文献   

19.
Different land uses in subtropics play an important role in regulating the global environmental changes. To reduce uncertainties of greenhouse gas (GHG) emissions of agricultural soils in subtropical ecosystem, a four years campaign was started to determine the temporal GHG (CO2 and CH4) fluxes from seven sites of four land use types (1 vegetable field, 3 uplands, 2 orchards, 1 pine forest). The mean annual budgets of CO2, and CH4 were 6.5~10.5 Mg CO2 ha?1 yr?1, and +0.47 ~ ?2.37 kg CH4 ha?1 yr?1, respectively. Pine forest had significantly lower CO2 emission and higher CH4 uptake than agriculture land uses. Tilled orchard emitted more CO2 and oxidized less CH4 than non-tilled orchard. Upland crops had higher CO2 emissions than orchards, while abrupt differences of CH4 uptake were observed between upland crops and orchards. Every year, the climate was warm and wet from April to September (the hot–humid season) and became cool and dry from October to March (the cool–dry season). Driven by seasonality of temperature and WFPS, CO2 fluxes were significantly higher in the hot–humid season than in cool–dry season. Soil temperature, WFPS, NO3?–N and NH4+–N contents interactively explained CH4 uptake which was significantly higher in cool–dry season than in hot–humid season. We conclude that soil C fluxes from different land uses are strongly under control of different climatic predictors along with soil nutrient status, which interact in conjunction with each other to supply the readily available substrates.  相似文献   

20.
Abstract

The removal system for the absorption of CO2 with amines and NH3 is an advanced air pollution control device to reduce greenhouse gas emissions. Absorption of CO2 by amines and NH3 solutions was performed in this study to derive the reaction kinetics. The absorption of CO2 as encountered in flue gases into aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and NH3 was carried out using a stirred vessel with a plane gas-liquid interface at 50 °C. Various operating parameters were tested to determine the effect of these variables on the absorption kinetics of the reactants in both gas and liquid phases and the effect of competitions between various reactants on the mass-transfer rate.

The observed absorption rate increases with increasing gas-liquid concentration, solvent concentration, temperature, and gas flow rate, but changes with the O2 concentration and pH value. The absorption efficiency of MEA is better than that of NH3 and DEA, but the absorption capacity of NH3 is the best. The active energies of the MEA and NH3 with CO2 are 33.19 and 40.09 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号