首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The reaction between three different Ca-based sorbents and SO2 were studied in a medium temperature range (473-773 K). The largest SO2 capture was found with Ca(OH)2 at 773 K, 126.31 mg SO2 x g Ca(OH)2(-1), and the influence of SO2 concentration on the sorbent utilization was observed. Investigations of the internal porous structure of Ca-based sorbents showed that the initial reaction rate was controlled by the surface area, and once the sulfated products were produced, pore structure dominated. To increase the surface area of Ca-based sorbents available to interact with and retain SO2, one kind of CaO/ activated carbon (AC) sorbent/catalyst was prepared to study the effect of AC on the dispersion of Ca-based materials. The results indicated that the Ca-based material dispersed on high-surface-area AC had more capacities for SO2 than unsupported Ca-based sorbents. The initial reaction rates of the reaction between SO2 and Ca-based sorbents and the prepared CaO/AC sorbents/catalysts were measured. Results showed that the reaction rate apparently increased with the presence of AC. It was concluded that CaO/AC was the active material in the desulfurization reaction. AC acting as the support can play a role to supply O2 to increase the affinity to SO2. Moreover, when AC is acting as a support, the surface oxygen functional group formed on the surface of AC can serve as a new site for SO2 adsorption.  相似文献   

2.
Novel silica-enhanced lime sorbents were tested in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were 64°C (147°F), relative humidity of 60 percent [corresponding to an approach to saturation temperature of 10°C (18°F)], and inlet SO2 concentration of 500 or 1000 ppm. The sorbents were prepared by pressure hydration of CaO or Ca(OH)2 with siliceous materials at 100°C (101 kPa) [212°F (14.7 psi)] to 230°C (2793 kPa) [446°F (405 psi)] for 15 min to 4 h. Pressure hydration fostered the formation of a sorbent reactive with SO2 from fly ash and Ca(OH)2 in a much shorter time than did atmospheric hydration. The conversion of Ca(OH)2 in the sand-bed reactor increased with the increasing weight ratio of fly ash to lime and correlated well with B.E.T. surface area, increasing with increasing surface area. The optimum temperature range for the pressure-hydration of fly ash with Ca(OH)2 was between 110 and 160°C (230 and 320 °F). The pressure hydration of diatomaceous earth with CaO did not offer significant reactivity advantages over atmospheric hydration; however, the rate of enhancement of Ca(OH)2 conversions was much faster with pressure hydration. Scanning electron microscope (SEM) and x-ray diffraction studies showed solids of different morphology with different fly ash/lime ratios and changing conditions of pressure hydration.  相似文献   

3.
ABSTRACT

The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was achieved by two of the Ca-based sorbents. The presence of sulfur dioxide (SO2) in the simulated coal combustion flue gas enhanced the Hg0 capture from about 10 to 40%. Increasing the temperature in the range of 65-100 °C also caused an increase in the Hg0 capture by the two Ca-based sorbents. Mercuric chloride (HgCl2) capture exhibited a totally different pattern. The presence of SO2 inhibited the HgCl2 capture by Ca-based sorbents from about 25 to less than 10%. Increasing the temperature in the studied range also caused a decrease in HgCl2 capture. Upon further pilot-scale confirmations, the results obtained in this bench-scale study can be used to design and manufacture more cost-effective mercury sorbents to replace conventional sorbents already in use in mercury control.  相似文献   

4.
EPA’s efforts to develop low cost, retrofitable flue gas cleaning technology include the development of highly reactive sorbents. Recent work addressing lime enhancement and testing at the bench-scale followed by evaluation of the more promising sorbents in a pilot plant are discussed here.

The conversion of Ca(OH)2 with SO2 increased several-fold compared with Ca(OH)2 alone when Ca(OH)2 was slurrled with fly ash first and later exposed to SO2 in a laboratory packed bed reactor. Ca(OH)2 enhancement increased with the increased fly ash amount. Dlatomaceous earths were very effective reactivity promoters of lime-based sorbents. Differential scanning calorimetry of the promoted sorbents revealed the formation of a new phase (calcium silicate hydrates) after hydration, which may be the basis for the observed Improved SO2 capture.

Fly ash/lime and diatomaceous earth/lime sorbents were tested in a 100 m3/h pilot facility incorporating a gas humidifier, a sorbent duct injection system, and a baghouse. The inlet SO2 concentration range was 1000-2500 ppm. With once-through dry sorbent injection into the humidified flue gas [approach to saturation 10–20°C (18–36°F) in the baghouse], the total SO2 removal ranged from 50 to 90 percent for a stoichiometric ratio of 1 to 2. Recycling the collected solids resulted in a total lime utilization exceeding 80–90 percent. Increased lime utilization was also investigated by the use of additives.  相似文献   

5.
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbents for flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a laboratory scale grinder prior to slurring in order to decrease the slurring time needed for the sorbent to be reactive with SO2. Reactivity of ADVACATE sorbents with SO2 in the bench-scale reactor correlated with their surface area.

ADVACATE sorbents produced with ground fly ash were evaluated in the 50 cfm (85 m3/h) pilot plant providing 2 s duct residence time. ADVACATE sorbent was produced by slurrying ground fly ash (median particle size of 4.3 µm) with Ca(OH)2 at the weight ratio of 3:1 at 90°C (194°F) for 3hto yield solids with 30 weight percent of initial free moisture. When this sorbent was injected into the duct with 1500 ppm SO2 and at 11°C (20°F) approach to saturation, the measured SO2 removal was approximately 60percent at a Ca/S stoichiometric ratio of 2. Previously, when ADVACATE sorbent was produced at 90°C (194°F) and at the same fly-ash-to-Ca(OH)2 weight ratio using unground fly ash, removal under the same conditions in the duct was approximately 50 percent following 12 h slurring. The report presents the results of pilot-scale recycle tests at the recycle ratio of 2. Finally, the report discusses future U.S. Environmental Protection Agency plans for commercialization of ADVACATE.  相似文献   

6.
Abstract

Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorp-tion capacities (~100 μg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

7.
The information presented in this paper is directed to engineers who are involved with environmental emissions from coal conversion plants. Synthetic sorbents were investigated as an alternative to natural sorbents (limestone) for the removal of SO2 from the combustion gas in a fluidized-bed coal combustor. The sulfation rate of a synthetic sorbent, CaO in α-AI2O3, was determined as a function of gas composition, temperature, and calcium concentration in the sorbent. The reaction was found to be diffusion-controlled above 850°C and kinetically controlled at lower temperatures. The physical characteristics of the support material have a major effect oh the sulfation kinetics. Porosity measurements indicated that supports containing large pores (>0.2 µm) produced sorbents having high sulfation rates and that pores with diameters less than 0.2 µm did not contribute significantly to the capture of SO2. The sorbents SrO in α-AI2O3 and BaO in α-AI2O3 had lower SO2 capture rates than did CaO in α-AI2O3. The alkali metal oxide sorbents K2O and Na2O in α-AI2O3 captured SO2 much faster than did the alkaline earth metal oxides.  相似文献   

8.
Abstract

The high temperature CaO/SO2 reaction was studied using four Swedish limestones and one dolomite as sorbents. The measurements were carried out in a vacuum thermogravimetric analysis (TGA) apparatus in order to investigate the intrinsic reaction mechanism. The reaction was found to be fast at the beginning due to the surface reaction, while the subsequent stage was controlled by the product layer diffusion, showing a lower reaction rate. The reaction rate increased as temperature increased up to 1000 °C in the range tested. SO2 partial pressure weakly affected the reaction. The fine sorbent particles used in the study resulted in the high CaO conversion. Further grinding of the sorbents gave a small increase in CaO conversion. Sintering generally decreased the initial reactivity but might not affect the ultimate CaO capacity. The larger pores in nascent CaO particles were valuable for the initial reaction conversion.  相似文献   

9.
Abstract

Emissions of acid gases such as SO2 and HCI/CI2 from energy conversion or waste incineration facilities are unacceptable. Under the various regulations, the emissions of such acid gases are regulated by the U.S. Environmental Protection Agency (EPA). Alkali metal sorbents can remove these acid gases more efficiently than the lime/limestone type sorbents used in the conventional flue gas desulfurization (FGD) systems. However, the resulting alkali metal sulfate and chloride are unsuitable for landfill disposal because they are water-soluble and can potentially leach into groundwater, altering the soil pH. Replacing the (virgin) sorbent material is expensive. Hence, it is desirable that the spent sorbent materials obtained from such emissions control systems be converted to sulfur- and chlorine-free forms, so that they can be reused. The weak-base, anionexchange resin-based desulfurization concept, developed and tested at the University of Tennessee Space Institute (UTSI), can also simultaneously remove sulfur- and chlorine- containing species from such spent sorbent materials. Under the U.S. Department of Energy’s (DOE) sponsorship, bench scale studies have been carried out at UTSI to evaluate the feasibility of removing sulfur- and chlorine-containing species using this resin-based concept. Efforts have also been made to enhance the candidate resins’ performance by carrying out the resin exhaustion step under CO2 static pressure and by using suitable pH buffering agents, such as low-molecular weight organic acids. Preliminary cost estimates for a regeneration scheme employing reactivated alkali metal-based spent sorbent material using the ion-exchange resin-based concept seem attractive and comparable to currently available options. After further development, this low-cost, simple process can be easily integrated into alkali metal sorbent-based flue gas desulfurization and acid gas emission control systems.  相似文献   

10.
Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li2CO3 and Ca(OH)2 to evaluate their effect on CO2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO2 uptake of 1.45 mmol CO2/g sorbent for K-FA 1:1 at 700 °C. The CO2 sorption was enhanced by the presence of Li2CO3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO2/g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li2CO3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO2 uptake and reaction rates over 10 cycles.  相似文献   

11.
The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying–preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying–preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying–preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique.

Implications: Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.  相似文献   


12.
Previous workers have shown that simultaneous SO2/NOX removal can be obtained in a dry scrubbing system with Ca(OH)2 promoted by an additive such as NaOH, and that fly ash and product recycle improve the reactivity of the solids toward SO2. To test SO2/NOX removal with fly ash and product recycle, bench-scale experiments with a packed bed reactor were performed at bag filter conditions. The most reactive solid for NOX removal was prepared by slurrying Ca(OH)2 with fly ash, CaSO3, and NaOH. The best conditions for NOX removal were the greatest temperature (125°C) and greatest concentrations of SO2 (1500 ppm) and O2 (20 percent). At the best conditions, NOX removed in 1 hour was 3-4 moles per 100 moles Ca(OH)2, compared to 5-10 moles SO2 removed per 100 moles Ca(OH)2. The best SO2 removal was obtained at the highest relative humidities/lowest temperatures (55% RH/ 65°C) with solids prepared by slurrying Ca(OH)2 with fly ash and NaOH. At these conditions, SO2 removed In 1 hour was 60-80 moles per 100 moles Ca(OH)2, compared to 0.5 to 1 moles NOX removed per 100 moles Ca(OH)2.  相似文献   

13.
The utility and industrial sectors continue to come under pressure from both national and local regulatory groups to reduce sulfur dioxide emissions. With a trend in the utility industry for life extension, retrofit technologies are likely to play an important role in any SO2 emission reduction strategy. Potential retrofit technologies include, singly and in combination: coal switching or cleaning, wet or dry FGD, conversion to fluidized bed, and dry sorbent injection. The diversity within the utility industry in terms of unit size, unit age, fuel use, financial base, and geographic location dictates the need for a variety of technologies to address SO2 emission control. Dry injection processes involving the injection of dry powders into either the furnace or post-furnace region offer the potential for low capital cost retrofitable technologies. However, compared to wet FGD processes, the dry calcium based processes will likely have lower SO2 removal efficiencies and may pose more plant-wide integration issues that need to be addressed from both an applications and R&D perspective.

This paper provides a critical assessment of dry injection technologies, in two parts. Part 1 focuses on sorbent processes and science. An assessment of the different dry sorbent processes and the effect of process parameters is provided. Emphasis is placed on process limitations and potential avenues to enhance SO2 removal. Part 2 will deal with applications of the technology, addressing cost, scale-up, and integration issues.

Much of the data included in this paper was presented at the 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, sponsored by the Electric Power Research Institute and the Environmental Protection Agency and held in June 1986. This paper provides both an overview and an evaluation of the technology, based largely on our analysis of the data and interpretations discussed at this symposium.  相似文献   

14.
ABSTRACT

Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 °C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.  相似文献   

15.
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

16.
Bodénan F  Deniard P 《Chemosphere》2003,51(5):335-347
For the first time, a set of samples of European flue gas cleaning residues, mainly from the incineration of municipal solid waste (MSW), has undergone a mineralogical study. The residues are the result of the neutralization of acid flue gases by lime, the predominant method adopted in Europe, using dry and semi-dry washing processes. The study protocol combines physico-chemical analytical techniques (XRD, FTIR, DSC/TGA) and global chemical analysis enabling identification of the chemical composition of the main constituents, particularly chlorinated Ca-based phases, as well as establishment of modal distributions of the represented phases, both crystalline and amorphous. The samples are slightly hydrated and values vary for trapped Cl, S and even CO(2). The main crystalline phases are NaCl, KCl, CaSO(4), CaCO(3), Ca(OH)(2) and calcium hydroxychloride CaOHCl. CaOHCl is the main chlorine phase, regardless of the treatment process, filtration mode, and specific surface of the Ca-based sorbent. This phase develops during neutralization of HCl by excess lime present according to the reaction Ca(OH)(2)+HCl-->CaOHCl+H(2)O, to the detriment of a complete yield involving the two lime OH groups with formation of CaCl(2).2H(2)O. In addition, it seems that gas temperatures above 150 degrees C increase competition between lime-based neutralization of HCl, SO(2) acid flue gases and CO(2) trapping, thus reducing washing efficiency.  相似文献   

17.
Fixed beds of sorbent media are used for the evaluation of poiynuclear aromatic hydrocarbons (PAH) present in air. Twostage sampling and separate extraction and analyses of PAH associated with aerosol particles and those present in the vapor state are usually performed. The ability of commonly used sorbents to retain particulate matter introduces a potential for reducing the time and cost of PAH evaluation procedures.

The filtration efficiency of three sorbent media, Florisil, XAD-2, and polyurethanefoam (PUF), for particles in 0.1 to 1 µm size range was studied using airflow rates from 4 to 2501 /mm through a PS 1 sorbent cartridge. Theoretical considerations were used to identify the principal filtration mechanisms and to assess the predictability of the aerosol filtration performance of sorbent filters. The results of this study indicate XAD-2 to be an efficient filtration medium owing to the electrostatic enhancement of capturing and retaining aerosol particles.

As a result of theoretical considerations, Brownian diffusion and inertial deposition were found to be major filtration mechanisms accompanied by electrostatic effects. While the efficiency of the diffusional deposition mechanism was reasonably well predicted with available theories, modeling of submicron particle impaction at higher fluid velocities appeared to be inadequate. Further developments are suggested to improve our understanding of filtration phenomena in sorbent beds under high flow rate conditions.  相似文献   

18.
柱状V/AC催化剂的再生对脱硫活性的影响   总被引:1,自引:0,他引:1  
使用常压固定床反应器,考察了吸附SO2的柱状V/AC催化剂的热再生和NH3再生行为.结果表明:柱状V/AC催化剂再生过程中生成的SO2主要沿催化剂轴向由内部向外扩散.催化剂350 ℃NH3再生的效率高于热再生的效率.两次热再生后柱状V/AC催化剂的脱硫活性开始下降,而六次NH3再生后的脱硫活性仍保持不变,甚至还稍高于新鲜柱状V/AC催化剂的脱硫活性.柱状V/AC催化剂孔结构和元素分析结果表明,NH3再生使催化剂表面含N官能团增加,保护了催化剂小于1 nm的微孔.  相似文献   

19.
A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L?1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L?1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91–99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L?1 of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples.

Implications: Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H2O2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91–99% of heavy metals removal. The coupled coagulation–oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.  相似文献   

20.
In the present study, an activated charcoal (AC) plate was prepared by physical activation method. Its surface was coated with TiO2 nanoparticles by electrophoretic deposition (EPD) method. The average crystallite size of TiO2 nanoparticles was determined approximately 28 nm. The nature of prepared electrode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area measurement before and after immobilization. The electrosorption and photocatalytic one-stage combined process was investigated in degradation of Lanasol Red 5B (LR5B), and the effect of dye concentration, electrolyte concentration, pH, voltage, and contact time was optimized and modeled using response surface methodology (RSM) approach. The dye concentration of 30 mg L?1, Na2SO4 concentration of 4.38 g L?1, pH of 4, voltage of 250 mV, and contact time of 120 min were determined as optimum conditions. Decolorization efficiency increased in combined process to 85.65 % at optimum conditions compared to 66.03 % in TiO2/AC photocatalytic, 20.09 % in TiO2/AC electrosorption, and 1.91 % in AC photocatalytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号