首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

A huge amount of inorganic acids can be produced and emitted with waste gases from integrated circuit manufacturing processes such as cleaning and etching. Emission of inorganic acids from selected semiconductor factories was measured in this study. The sampling of the inorganic acids was based on the porous metal denuders, and samples were then analyzed by ion chromatography. The amount of chemical usage was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County according to the Taiwan Environmental Protection Agency regulation. The emission factor is defined as the emission rate (kg/month) divided by the amount of chemical usage (L/month). Emission factors of three inorganic acids (i.e., hydrofluoric acid [HF], hydrochloric acid [HQ], and sulfuric acid [H2SO4]) were estimated by the same method. The emission factors of HF and HCl were determined to be 0.0075 kg/L (coefficient of variation [CV] = 60.7%, n = 80) and 0.0096 kg/L (CV = 68.2%, n = 91), respectively. Linear regression equations are proposed to fit the data with correlation coefficient square (R2) = 0.82 and 0.9, respectively. The emission factor of H2SO4, which is in the droplet form, was determined to be 0.0016 kg/L (CV = 99.2%, n = 107), and its R2 was 0.84. The emission profiles of gaseous inorganic acids show that HF is the dominant chemical in most of the fabricators.  相似文献   

2.
Abstract

A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 ± 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2) = 0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.  相似文献   

3.
Abstract

Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as –25 to +30% for Hg to as large as –83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.  相似文献   

4.
A model based on K-theory has been developed for describing the short range air dispersion from area sources of non-buoyant toxics. Model parameter estimation is via boundary layer theory. Lateral dispersion by plume meander is considered but ail other sources of horizontal dispersion are neglected. The model can be applied on and near area sources and it can be adapted for predictions of downwind concentrations with a wide variety of meteorological Inputs.

The model has been evaluated by simulating the data obtained during atmospheric tracer studies and by comparison to vinyl chloride concentrations near the BKK landfill in southern California. The model appears to represent a useful and accurate tool for regulatory planning and risk assessment close to area sources of toxics.  相似文献   

5.
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

6.
Abstract

Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over >6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m?3 hr?1 at a gas retention time of 13.5 sec and 66 g m?3 hr?1 at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.  相似文献   

7.
Incineration is often the preferred technology for disposing of hazardous waste and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition to hazardous waste incineration (HWI). One of the reasons cited for this opposition is the perception that the emission of organics pose an unreasonable threat to human health. While numerous risk assessments for these facilities have demonstrated that the risks from the inhalation of HWI emissions are very low, this has not totally allayed some of the concerns. In order to put organic emissions in perspective, the mass of these emissions from the incineration of hazardous waste on a national scale has been estimated using “reasonable worst-case” assumptions and compared to the 1990 Toxics Release Inventory (TRI) air releases. Comparisons were made for 15 carcinogenic organic compounds and 17 non-carcinogenic organic compounds. Ratios for all but one of these compound-specific HWI emissions to their corresponding TRI air releases ranged from 0.0003 to 0.678 percent. The total mass emissions (110.5 tons) of all 32 specific organics from HWIs was less than 0.03 percent of the corresponding 1990 TRI air releases (431,586 tons).  相似文献   

8.
This paper discusses the potential for using commercially available treatment techniques to remove VOCs from hazardous waste streams and addresses some of the issues associated with making waste treatment a viable VOC emission control technique for hazardous waste management facilities. It discusses the waste streams of concern because of their volatile constituents and describes potentially applicable treatment techniques. The use of models for treatment process design is described. Finally, the paper discusses treatment cost, treatment residuals, and considerations of importance in choosing where in the life cycle of a hazardous waste stream to treat it.  相似文献   

9.
Abstract

Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes—dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)—were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2,SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions.  相似文献   

10.
Abstract

This study presents the Individual Based Exposure Modeling (IBEM) application of MENTOR (Modeling ENvironment for TOtal Risk studies) in a hot spot area, where there are concentrated local sources on the scale of tens to hundreds of meters, and an urban reference area in Camden, NJ, to characterize the ambient concentrations and personal exposures to benzene and toluene from local ambient sources. The emission-based ambient concentrations in the two neighborhoods were first estimated through atmospheric dispersion modeling. Subsequently, the calculated and measured ambient concentrations of benzene and toluene were separately combined with the time-activity diaries completed by the subjects as inputs to MENTOR/IBEM for estimating personal exposures resulting from ambient sources. The modeling results were then compared with the actual personal measurements collected from over 100 individuals in the field study to identify the gaps in modeling personal exposures in a hot spot. The modeled ambient concentrations of benzene and toluene were generally in agreement with the neighborhood measurements within a factor of 2, but were underestimated at the high-end percentiles. The major local contributors to the benzene ambient levels are from mobile sources, whereas mobile and stationary (point and area) sources contribute to the toluene ambient levels in the study area. This finding can be used as guidance for developing better air toxic emission inventories for characterizing, through modeling, the ambient concentrations of air toxics in the study area. The estimated percentage contributions of personal exposures from ambient sources were generally higher in the hot spot area than the urban reference area in Camden, NJ, for benzene and toluene. This finding demonstrates the hot spot characteristics of stronger local ambient source impacts on personal exposures. Non-ambient sources were also found as significant contributors to personal exposures to benzene and toluene for the population studied.  相似文献   

11.
Yu BW  Jin GZ  Moon YH  Kim MK  Kyoung JD  Chang YS 《Chemosphere》2006,62(3):494-501
The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton.  相似文献   

12.
Section 507 of the 1990 Clean Air Act Amendments (CAAA) requires states to develop a small business stationary source and environmental compliance assistance program to aid small businesses impacted by applicable air quality regulations. In general, the program consists of three main components: (1) a small business assistance program (SBAP) for providing compliance and technical assistance to small businesses; (2) an ombudsman for providing direct oversight to the SBAP; and (3) a compliance advisory panel consisting of members from both the public and private sector responsible for determining the overall effectiveness of the SBAP. The key component of the program for assisting small businesses is the SBAP. Providing the necessary assistance to small businesses regarding such issues as permit applicability, rights under the CAAA and emission control options will require the SBAP to develop both proactive and reactive components. The proactive component involves providing outreach services in the form of collecting and disseminating compliance and technical information to small businesses. The reactive component includes the establishment of an information clearinghouse for handling the many inquiries from members of the small business community who have never been subject to air pollution control regulations. States without the available resources to fully implement an SBAP may need to rely on contractor assistance. This paper briefly describes the establishment of the program, provides an overview of each of the program components, discusses many of the ways in which states may implement both the proactive and reactive components of the SBAP, and lists the types of contractors most suitable for SBAP assistance.  相似文献   

13.
The NO, NO2, and CO emissions from residential gas combustion appliances contribute to indoor air pollution. The work described investigated the impact of various unvented gas appliances designs and/or operational factors on pollutant emission rates. All experiments were performed in a 1150 ft3 (32.56 m3) all aluminum chamber under controlled conditions. Results are presented for the effect of the following factors on emission rates: 1) appliance type and/or design, 2) primary aeration level, 3) firing rate (fuel input rate), 4) chamber humidity, and 5) time dependence of emission rates. It is concluded that primary aeration level has the largest impact on pollutant emission rates of range-top burners, followed in turn by firing rate, appliance type, chamber humidity, and time dependence of emission rate.  相似文献   

14.
Abstract

Although emission inventories are the foundation of air quality management and have supported substantial improvements in North American air quality, they have a number of shortcomings that can potentially lead to ineffective air quality management strategies. Major reductions in the largest emissions sources have made accurate inventories of previously minor sources much more important to the understanding and improvement of local air quality. Changes in manufacturing processes, industry types, vehicle technologies, and metropolitan infrastructure are occurring at an increasingly rapid pace, emphasizing the importance of inventories that reflect current conditions. New technologies for measuring source emissions and ambient pollutant concentrations, both at the point of emissions and from remote platforms, are providing novel approaches to collecting data for inventory developers. Advances in information technologies are allowing data to be shared more quickly, more easily, and processed and compared in novel ways that can speed the development of emission inventories. Approaches to improving quantitative measures of inventory uncertainty allow air quality management decisions to take into account the uncertainties associated with emissions estimates, providing more accurate projections of how well alternative strategies may work. This paper discusses applications of these technologies and techniques to improve the accuracy, timeliness, and completeness of emission inventories across North America and outlines a series of eight recommendations aimed at inventory developers and air quality management decision-makers to improve emission inventories and enable them to support effective air quality management decisions for the foreseeable future.  相似文献   

15.
ABSTRACT

A series of twelve intensively monitored 1-hr CO dispersion studies were conducted near Davis, CA, in winter 1996. The experimental equipment included twelve CO sampling ports at elevations up to 50 m, three sonic anemometers, a tethersonde station, aircraft measurements of wind and temperature profile aloft, and a variety of conventional meteorological equipment. The study was designed to explore the role of vehicular exhaust buoyancy during worst-case meteorological conditions, such as low winds oriented in near-parallel alignment with the road during a surface-based nocturnal inversion. From the study, field estimates of the CO emission factor (EF) from a California vehicle fleet were computed using two different methods. The analysis suggests that the CT-EMFAC/ EMFAC (EMission FACtor) models currently used to conduct federal conformity modeling significantly overpredict CO emissions for high-speed, free-flowing traffic on California highways.  相似文献   

16.
Abstract

Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 μg m?3 and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head?1 day?1, showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

17.
ABSTRACT

Emission factors for selected volatile organic compounds (VOCs) and particulate material were developed during processing of commercial grades of polyamide 6, polyamide 66, and polyamide 66/6 resins. A small commercial-type extruder was used, and melt temperatures ranged from 475 to 550 °F. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere per million pounds of polymer resin processed. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar polyamide extrusion operations.  相似文献   

18.
Abstract

Emission factors for selected volatile organic compounds (VOCs) and particulate emissions were developed while processing eight commercial grades of polycarbonate (PC) and one grade of a PC/acrylonitrile-butadiene-styrene (ABS) blend. A small commercial-type extruder was used, and the extrusion temperature was held constant at 304 °C. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere/million pounds of polymer resin processed [ppm (wt/wt)]. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar PC processing operations.  相似文献   

19.
In New York State, the calculation of air contaminant emissions from a variety of sources is an essential part of comprehensive air pollution studies. The tables used to calculate emissions were obtained from an extensive literature search and modified to apply to New York State conditions. For example, sulfur dioxide emission factors for coal were selected to reflect the average sulfur content of the coal sold in New York State. Since the literature contains a wide array of emission factors, it was necessary to evaluate the factors and select those which would be most appropriate for the techniques used in conducting the comprehensive studies in New York State. This paper does not present the emission tables themselves but does outline the development of such tables for use in nonprocess calculations, i.e., combustion for heat and power of bituminous and anthracite coal, distillate and residual oil, natural and bottled gas; combustion of gasoline and diesel in internal combustion engines; burning of refuse in dumps and incinerators; and evaporation of gasoline from marketing operations.  相似文献   

20.
利用2000—2007年大气污染物排放量数据和同期环境空气质量监测数据,分析了江苏省主要大气污染物减排与环境空气质量变化的相关性。结果表明,近年来江苏省SO2排放量与环境空气中SO2浓度存在正相关,而烟尘和粉尘排放总量与空气中可吸入颗粒物的浓度呈现出弱的负相关关系。对江苏省经济发展和环境关系的进一步分析揭示,江苏省环境库兹涅茨曲线呈现出倒U型关系,表明江苏省已经进入经济环境双赢区间,但近年来政策对经济环境关系的影响突出。该研究对中国十二五环境管理政策的制定有着重要的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号