首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study provides the first comprehensive report on mass concentrations of particulate matter of various sizes, inorganic and organic gas concentrations monitored at three sampling sites in the city of Palermo (Sicily, Italy). It also provides information on the water-soluble species and trace elements. A total of 2054 PM10 (1333) and PM2.5 (721) daily measurements were collected from November 2006 to February 2008. The highest mass concentrations were observed at the urban stations, average values being about two times higher than those at the suburban (control) site. Time variations in PM10 and also PM10–2.5 were observed at the urban stations, the highest concentrations being measured in autumn and winter. CO, NOx, NO2, benzene, toluene and o-xylene concentrations peaked in autumn and winter, a pattern similar to those recorded for PM10 and PM10–2.5 mass levels, indicating the importance of traffic emissions in urban air pollution. 91% and 51% of the benzene measurements exceeded the limit of 5 μg m?3 at the two urban monitoring sites. Trace elements (As, Ba, Cr, Cu, Mo, Pb, Sb) suspected of being introduced into the atmosphere mainly by anthropogenic activities, were highly enriched with respect to local soil. Results indicate that a large fraction of PM10 (31–47% in weight) and PM2.5 (29% in weight) is made up of water-soluble ions. Ammonium sulphate and nitrate particles accounted for 14–29 wt% of particulate matter mass concentrations. Crustal and marine components, combined, account for 41% and 49% in PM2.5 and PM10, respectively. The calculated deficits in Cl- and NH4+ ions suggest that a proportion of these ions are lost, via the formation of gaseous NH4Cl or HCl and NH3.  相似文献   

2.
ABSTRACT

In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 um) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of ~25 by means of a 2.5-um cut point round nozzle virtual impactor while maintaining fine mass (FM)—that is, the mass of PM2 5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-um cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit  相似文献   

3.
ABSTRACT

In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM25 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM25), NO3 - (23-26% of PM10 and 28-41% of PM25), SO4= (6-11% of PM10 and 9-18% of PM2 5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM25). On an annual average basis, PM25 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 ug/m3 at Anaheim to 76.8 ug/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 ug/m3 at Anaheim to 39.8 ug/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.1  相似文献   

4.
Abstract

It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 [H9262]m (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10–2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children’s Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

5.
Compelling evidence indicates that exposure to urban airborne particulate matter (PM) affects health. However, how PM components interact with PM-size to cause adverse health effects needs elucidation, especially when considering soil and anthropogenic sources. We studied PM from Mexicali, Mexico, where soil particles contribute importantly to air pollution, expecting to differentiate in vitro effects related to PM-size and composition. PM samples with mean aerodynamic diameters ≤2.5μm (PM(2.5)) and ≤10μm (PM(10)) were collected in Mexicali (October 2005-March 2006) from a semi-urban (expected larger participation of soil sources) and an urban (predominately combustion sources) site. Samples were pooled by site and size, analyzed for elemental composition (particle-induced X-ray emission) and tested in vitro for: induction of human erythrocytes membrane disruption (hemolysis) (colorimetrically); inhibition of cell proliferation (ICP) (crystal violet) and TNFα/IL-6 secretion (ELISA) using J774.A1 murine monocytic cells; and DNA degradation using Balb/c3T3 cell naked DNA (electrophoretically). Results of PM elemental composition principal component analysis were used in associating cellular effects. Sixteen elements identified in PM grouped in two principal components: Component(1) (C(1)): Mg, Al, Si, P, Cl, K, Ca, Ti, V, Cr, Fe, and Component(2) (C(2)): Cu, Zn. Hemolysis was predominately induced by semi-urban-PM(10) (p<0.05) and was associated with urban-PM(10)C(1) (r=0.62, p=0.003). Major ICP resulted with semi-urban PM(2.5) (p<0.05). TNFα was mainly induced by urban samples regardless of size (p<0.05) and associated with urban-PM(2.5)C(2) (r=0.48, p=0.02). Both PM(10) samples induced highest DNA degradation (p<0.05), regardless of location. We conclude that PM-size and PM-related soil or anthropogenic elements trigger specific biological-response patterns.  相似文献   

6.
Elemental compositions were measured for TSP (total suspended particulate matter), PM2−10 and PM2 (particulate matter with aerodynamic diameters from 2 to 10 μm and less than 2 μm, respectively) in Ho Chi Minh City. Concentrations of 23 elements and particulate mass (PM) were used for receptor modelling to identify and quantify aerosol sources using principal component factor analysis (PCFA). A suite of factors containing similar elements with significant factor loadings were revealed among the factor matrices, thus facilitating the identification of common sources for different aerosol types. These sources include vehicular emissions (Br and Zn), coal burning (Se), industrial processes (Ce, Co, Cr, Pb and Sb), road dust (Al, Ti, V), soil dust (Fe and Th) and biomass burning (K). Marine aerosols (Na and Cl) and mineral fly ash (Sc and La) were revealed only in the PM2−10 model. For TSP, the last four sources are combined in one factor. The last (9th) factor in the PM2 model, characterised by a high loading from PM and insignificant loadings from elements, was attributed to secondary sulphates and organics, although these constituents were not measured in the experiments. Such a remarkable source identification capability of the modelling technique highlights the significance of achieving an optimal factor solution as a crucial step in PCFA, that was done by systematically varying the number of factors retained and carefully evaluating each factor matrix for both model fitting performance and physical reasonableness.  相似文献   

7.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

8.
The Monterrey Metropolitan Area (MMA) is the third largest city in Mexico. Few studies have been carried out regarding its air pollution. The aim of this study was to analyze the temporal behavior of PM10 (particulate matter < or =10 microm in aerodynamic diameter). Data reported by the "Sistema Integral de Monitoreo Ambiental" (Integrated Environmental Monitoring System) network from 2006 to 2008 were used. PM10 levels were compared among the stations by year, season, and day of week. A bootstrap technique was used to obtain subsamples to which Student's t test and ANOVA were applied. PM10 levels were high and exceeded the annual limit of 50 microg/m3 set up by the Mexican standard Norma Oficial Mexicana NOM-025-SSA1-1993. These levels could have serious health effects. The southwest zone of MMA had the highest levels of PM10 during the period studied. Winter was the most polluted season, and summer was the least polluted season. Thursday and Friday were the most polluted days, and Sunday was the least polluted day. The hours with the highest levels of PM10 were 8:00 to 10:00 a.m., whereas nighttime hours were the cleanest.  相似文献   

9.
10.
Deposition of PM(10) particles to several types of urban surfaces was investigated within this study. Antimony was chosen as a tracer element to calculate dry deposition velocities for PM(10), since antimony proved to be present almost exclusively in PM(10) particles in ambient urban air. During 18 months, eight sampling sites in Berlin and Karlsruhe, two cities in Germany, were operated. PM(10) concentrations and dry deposition were routinely sampled as two week averages. Additionally, leaf-samples were collected at three sites with tall vegetation. The obtained deposition velocities ranged from 0.8 to 1.3 cms(-1) at roadside sites and from 0.4 to 0.5 cms(-1) at the other sites. With reference to the whole canopy, additional deposition velocities of about 0.5 cms(-1) were obtained for leaf surfaces. As a consequence, it can be concluded that vegetation-covered areas beside streets show the highest potential to capture particles in urban areas.  相似文献   

11.
Inhalable particulate matter (PM10) concentrations were measured over 24-h intervals at six different urban sites in the city of Chillán from September 2001 to April 2003. Sampling locations were selected to represent central city, commercial, residential, and industrial portions of the city. Chemical composition of PM10 was performed to samples of 47 mm diameter Teflon membranes within the city of Chillán. The spatial and temporal variability of the chemical composition of PM10 was evaluated taking into account additional data from meteorology and further air pollutants. The majority of PM mass was comprised of carbon, nitrate, sulfate, ammonium, and crustal components but in different proportion on different days and at different sites. The chemical analyses showed that carbonaceous substances and crustal material were the most abundant component of PM10 during the winter and summer, respectively. The concentrations of PM10 were higher during the cold season than during the warm season. The PM10 concentrations were higher in the downtown area of the city of Chillán, where also the chemical composition was more variable due to urban traffic and other anthropogenic sources.  相似文献   

12.
13.
Abstract

The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 μm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45 ± 0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02 ± 0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (σa). The high correlation that has been found between these variables indicates that σa is a good indicator of the degree of contamination of urbanized areas.

The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.  相似文献   

14.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   

15.
提出了一种利用移动监测技术研究区域大气环境中PM2.5/PM10空间分布的方法,并在2004年12月进行了宁波市全市域PM2.5/PM10空间分布的研究。数据显示:相同路径所代表的地区PM2.5和PM10具有很好的相关性,多数路径上PM2.5与PM10数据的相关系数平方在0.95以上,而不同路径上PM2.5与PM10的比值不同。文中给出了宁波市PM2.5/PM10污染的空间分布图,直观地显示出PM2.5/PM10污染的空间分布情况,突出了污染的重点点位和地区。  相似文献   

16.
关于PM2.5的综述   总被引:3,自引:0,他引:3  
综述了大气PM25的来源,样品采集分析,化学组成,病毒机理,对人类健康和大气能见度的影响,以及国内外的研究进展.  相似文献   

17.
南宁市大气颗粒物TSP、PM10、PM2.5污染水平研究   总被引:15,自引:1,他引:14  
2002年在南宁市的5个典型城市功能区内,共采集了125个大气样品(按季节分别采集),初步调查了大气中颗粒物TSP、PM10、PM2.5的污染状况。结果表明,南宁市TSP、PM10、PM2.5的污染很严重,超标率分别为67.5%、82.5%、92.5%,对人体健康危害更大的PM2.5占到了PM10的63.5%左右。重污染区PM2.5的浓度超过轻污染区近一倍。  相似文献   

18.
Italy is frequently affected by Saharan dust intrusions, which result in high PM10 concentrations in the atmosphere and can cause the exceedances of the PM10 daily limits (50 μg m?3) set by the European Union (EU/2008/50). The estimate of African dust contribution to PM10 concentrations is therefore a key issue in air quality assessment and policy formulation. This study presents a first identification of Saharan dust outbreaks as well as an estimate of the African dust contribution to PM10 concentrations during the period 2003–2005 over Italy. The identification of dust events has been carried out by looking at different sources of information such as monitoring network observations, satellite images, ground measurements of aerosol optical properties, dust model simulations and air mass backward trajectory analysis. The contribution of Saharan dust to PM10 monthly concentrations has been estimated at seven Italian locations. The results are both spatially (with station) and temporally (with month and year) variable, as a consequence of the variability of the meteorological conditions. However, excluding the contribution of severe dust events (21st February 2004, 25th–28th September 2003, 23rd–27th March 2005), the monthly contribution of dust varies approximately between 1 μg m?3 and 10 μg m?3 throughout year 2005 and between 1 μg m?3 and 8 μg m?3 throughout year 2003. In 2004 the dust concentration is lower than 2003 and 2005 (<5 μg m?3 at all sites). The reduction in the number of daily exceedances of the limit value (50 μg m?3) after subtraction of the dust contribution is also calculated at each station: it varies with station between 20% and 50% in 2005 and between 5% and 25% in 2003 and 2004.  相似文献   

19.
20.
为了解贵阳市冬季大气污染现状,以贵阳市污染相对严重的白云区为研究对象,连续采集PM_(2.5)、PM_(10)浓度数据,利用普通克里金法进行空间插值获取PM_(2.5)、PM_(10)分布特征。通过留一法交叉验证,比较6种半变异函数模型(三角函数、高斯函数、球面函数、指数函数、J-Bessel函数和K-Bessel函数)的空间插值精度,选出最适的函数模型;采用分区统计和格网统计的方法,对不同土地利用类型、植被覆盖度下的PM_(2.5)、PM_(10)平均浓度进行比较分析。结果表明,三角函数是PM_(2.5)空间插值的最适模型,指数函数是PM_(10)空间插值的最适模型;贵阳市白云区冬季大气PM_(2.5)、PM_(10)浓度总体表现出城区浓度高,郊区浓度低的分布特征;土地利用类型和植被覆盖度对PM_(2.5)和PM_(10)浓度有着较强的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号