首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM25 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM25), NO3 - (23-26% of PM10 and 28-41% of PM25), SO4= (6-11% of PM10 and 9-18% of PM2 5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM25). On an annual average basis, PM25 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 ug/m3 at Anaheim to 76.8 ug/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 ug/m3 at Anaheim to 39.8 ug/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.1  相似文献   

2.
Abstract

For at least 30 years, ozone (O3) levels on weekends in parts of California’s South Coast (Los Angeles) Air Basin (SoCAB) have been as high as or higher than on weekdays, even though ambient levels of O3 precursors are lower on weekends than on weekdays. A field study was conducted in the Los Angeles area during fall 2000 to test whether proposed relationships between emission sources and ambient nonmethane hydrocarbon (NMHC) and oxides of nitrogen (NOx) levels can account for observed diurnal and day-of-week variations in the concentration and proportions of precursor pollutants that may affect the efficiency and rate of O3 formation. The contributions to ambient NMHC by motor vehicle exhaust and evaporative emissions, estimated using chemical mass balance (CMB) receptor modeling, ranged from 65 to 85% with minimal day-of-week variation. Ratios of ambient NOx associated with black carbon (BC) to NOx associated with carbon monoxide (CO) were approximately 1.25 ± 0.22 during weekdays and 0.76 ± 0.07 and 0.52 ± 0.07 on Saturday and Sunday, respectively. These results demonstrate that lower NOx emissions from diesel exhaust can be a major factor causing lower NOx mixing ratios and higher NMHC/NOx ratios on weekends. Nonmobile sources showed no significant day-of-week variations in their contributions to NMHC. Greater amounts of gasoline emissions are carried over on Friday and Saturday evenings but are, at most, a minor factor contributing to higher NMHC/NOx ratios on weekend mornings.  相似文献   

3.
This study evaluates air quality model sensitivity to input and to model components. Simulations are performed using the California Institute of Technology (CIT) airshed model. Results show the impacts on ozone (O3) concentration in the South Coast Air Basin (SCAB) of California because of changes in: (1) input data, including meteorological conditions (temperature, UV radiation, mixing height, and wind speed), boundary conditions, and initial conditions (ICs); and (2) model components, including advection solver and chemical mechanism. O3 concentrations are strongly affected by meteorological conditions and, in particular, by temperature. ICs also affect O3 concentrations, especially in the first 2 days of simulation. On the other hand, boundary conditions do not significantly affect the absolute peak O3 concentration, although they do affect concentrations near the inflow boundaries. Moreover, predicted O3 concentrations are impacted considerably by the chemical mechanism. In addition, dispersion of pollutants is affected by the advection routine used to calculate its transport. Comparison among CIT, California Photochemical Grid Model (CALGRID), and Urban Airshed Model air quality models suggests that differences in O3 predictions are mainly caused by the different chemical mechanisms used. Additionally, advection solvers contribute to the differences observed among model predictions. Uncertainty in predicted peak O3 concentration suggests that air quality evaluation should not be based solely on this single value but also on trends predicted by air quality models using a number of chemical mechanisms and with an advection solver that is mass conservative.  相似文献   

4.
Abstract

This study evaluates air quality model sensitivity to input and to model components. Simulations are performed using the California Institute of Technology (CIT) airshed model. Results show the impacts on ozone (O3) concentration in the South Coast Air Basin (SCAB) of California because of changes in: (1) input data, including meteorological conditions (temperature, UV radiation, mixing height, and wind speed), boundary conditions, and initial conditions (ICs); and (2) model components, including advection solver and chemical mechanism. O3 concentrations are strongly affected by meteorological conditions and, in particular, by temperature. ICs also affect O3 concentrations, especially in the first 2 days of simulation. On the other hand, boundary conditions do not significantly affect the absolute peak O3 concentration, although they do affect concentrations near the inflow boundaries. Moreover, predicted O3 concentrations are impacted considerably by the chemical mechanism. In addition, dispersion of pollutants is affected by the advection routine used to calculate its transport. Comparison among CIT, California Photochemical Grid Model (CALGRID), and Urban Airshed Model air quality models suggests that differences in O3 predictions are mainly caused by the different chemical mechanisms used. Additionally, advection solvers contribute to the differences observed among model predictions. Uncertainty in predicted peak O3 concentration suggests that air quality evaluation should not be based solely on this single value but also on trends predicted by air quality models using a number of chemical mechanisms and with an advection solver that is mass conservative.  相似文献   

5.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

6.
Abstract

Since the mid-1970s, ozone (O3) levels in portions of California’s South Coast Air Basin (SoCAB) on weekends have been as high as or higher than levels on weekdays, even though emissions of O3 precursors are lower on weekends. Analysis of the ambient data indicates that the intensity and spatial extent of the weekend O3 effect are correlated with day-of-week variations in the extent of O3 inhibition caused by titration with nitric oxide (NO), reaction of hydroxyl radical (OH) with nitrogen dioxide (NO2), and rates of O3 accumulation. Lower NO mixing ratios and higher NO2/oxides of nitrogen (NOx) ratios on weekend mornings allow O3 to begin accumulating approximately an hour earlier on weekends. The weekday/weekend differences in the duration of O3 accumulation remained relatively constant from 1981 to 2000. In contrast, the rate of O3 accumulation decreased by one-third to one-half over the same period; the largest reductions occurred in the central basin on weekdays. Trends in mixing ratios of O3 precursors show a transition to lower volatile organic compound (VOC)/NOx ratios caused by greater reductions in VOC emissions. Reductions in VOC/NOx ratios were greater on weekdays, resulting in higher VOC/NOx ratios on weekends relative to weekdays. Trends in VOC/NOx ratios parallel the downward trend in peak O3 levels, a shift in the location of peak O3 from the central to the eastern portion of the basin, and an increase in the magnitude and spatial extent of the weekend O3 effect.  相似文献   

7.
Abstract

It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 [H9262]m (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10–2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children’s Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

8.
9.
A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources.Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM0.1 in urban areas while motor vehicle sources were the major contributor of PM0.1 in rural areas, reflecting the influence from two major highways that transect the Valley.  相似文献   

10.
Terraces are traditional engineered ecosystems that affect the hydro-geological equilibrium, slope stability, and local communities. The aims of this paper are (i) identifying environmental factors that affect terrace stability in the Amalfi Coast, (ii) defining agriculturalists’ observations on environmental changes within that system and (iii) exploring potentiality of these observations to better define conservation strategies. All available data on physical and ecological factors recognized to affect the terrace system were collected and analyzed. Interviews were conducted with agriculturalists to obtain long-term observations on environmental factors that interact with this system. Landslides are more frequent where rainfall is high and during winter. Fires have an uneven annual distribution, with higher frequency during summers. Agriculturalists detailed complex interactions among environmental factors, economic elements, and terraces. These observations represent a valuable resource for defining causes and effects of abandonment and for better addressing conservation strategies.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0433-3) contains supplementary material, which is available to authorized users.  相似文献   

11.
Eight large-scale atmospheric tracer tests, utilizing CBrF3 and/or SF6, were conducted during September, 1976, within the California Delta Region. The purpose of this study was to demonstrate the large-scale application of single and double tracer techniques to the study of pollutant transport and dispersion under complex, coastal meteorological conditions.The resulting tracer data base was comprehensive enough to permit accurate mass balances of the tracer; essentially all of the tracer was accounted for by this analysis. On the average, plumes emitted from the Montezuma Hills during the test periods were transported southeast over Stockton into the San Joaquin Valley. As a result of the steady nature of the winds, the commonly used Hino correction was found to grossly underestimate the hourly averaged tracer concentrations computed from 10-s averaged concentrations.Experimentally determined rates of dispersion were greater than those associated with Pasquill-Gifford dispersion curves. In spite of the complex meteorology and terrain, estimates of tracer concentrations based upon the Gaussian plume model were found to be reasonably accurate.The relationship between the horizontal standard deviation of the wind, σθ, and the horizontal dispersion parameter of the plume, σy, was found to follow σy∼-0.85 θ, where x is the downwind distance of the plume center. Calculated trajectories and arrival times of air parcels based upon a numerical solution to the two-dimensional mass balance equation were found to be in excellent agreement with the tracer data.  相似文献   

12.
Abstract

The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4 +; 20%), coarse nitrate (NO3 ?; 16%), fine NO3 + (5%), and coarse NH4 + (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4 + concentrations.  相似文献   

13.
Elemental compositions were measured for TSP (total suspended particulate matter), PM2−10 and PM2 (particulate matter with aerodynamic diameters from 2 to 10 μm and less than 2 μm, respectively) in Ho Chi Minh City. Concentrations of 23 elements and particulate mass (PM) were used for receptor modelling to identify and quantify aerosol sources using principal component factor analysis (PCFA). A suite of factors containing similar elements with significant factor loadings were revealed among the factor matrices, thus facilitating the identification of common sources for different aerosol types. These sources include vehicular emissions (Br and Zn), coal burning (Se), industrial processes (Ce, Co, Cr, Pb and Sb), road dust (Al, Ti, V), soil dust (Fe and Th) and biomass burning (K). Marine aerosols (Na and Cl) and mineral fly ash (Sc and La) were revealed only in the PM2−10 model. For TSP, the last four sources are combined in one factor. The last (9th) factor in the PM2 model, characterised by a high loading from PM and insignificant loadings from elements, was attributed to secondary sulphates and organics, although these constituents were not measured in the experiments. Such a remarkable source identification capability of the modelling technique highlights the significance of achieving an optimal factor solution as a crucial step in PCFA, that was done by systematically varying the number of factors retained and carefully evaluating each factor matrix for both model fitting performance and physical reasonableness.  相似文献   

14.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. Part 2 of this article describes the history of TCE and TCA. TCE production in the United States began in the early 1920s. TCE was used as a replacement for petroleum distillates in the dry-cleaning industry, and became the solvent of choice for vapor degreasing in the 1930s. TCE’s use as a degreaser decreased in the 1960s due to toxicity concerns and the increasing popularity of TCA. Significant TCA use began in the 1950s with the development of suitable stabilizer formulations. In the 1990s, TCA was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

15.
The Ozone Weekend Effect (OWE) has become increasingly more frequent and widespread in southern California since the mid-1970s. Although a number of hypotheses have been suggested to explain the effect, there remains uncertainty associated with the root factors contributing to elevated weekend ozone concentrations. Targeting the time window of the 1997 Southern California Ozone Study (SCOS97), this paper examines traffic activity data for 14 vehicle classes at 27 weigh-in-motion (WIM) stations in southern California. Nonparametric factorial analyses of light-duty vehicle (LDV) and heavy-duty truck (HDT) traffic volumes indicate significant differences in daily volumes by day of week and between the weekly patterns of daily LDV and HDT volumes. Across WIM stations, the daily LDV volume was highest on Friday and decreased by 10% on weekends compared to that on midweek days. In contrast, daily HDT volumes showed dramatic weekend drops of 53% on Saturday and 64% on Sunday. As a result, LDV to HDT ratios increased by 145% on weekends. Nonparametric tests also suggest that weekly traffic patterns varied significantly between WIM stations located close to (central) and far from (peripheral) the Los Angeles Metro area. Weekend increases in LDV/HDT ratios were more pronounced at central WIM sites due to greater weekend declines of HDT relative to LDV traffic. The implications of these weekly traffic patterns for the OWE in southern California were investigated by estimating daily WIM traffic on-road running exhaust emissions of total organic gas (TOG) and oxides of nitrogen (NOx) using EMFAC2002 emission factors. The results support the California Air Resource Board's (CARB's) NOx reduction hypothesis that greater weekend NOx reductions relative to volatile organic compound (VOC) emissions, in combinations with the VOC-limited ozone system, contribute to the OWE observed in the region. The results from this study can be used to develop weekend on-road mobile emission inventories for the purpose of air quality modeling.  相似文献   

16.
17.
ABSTRACT

Assessment of regulatory programs aimed at improving ambient O3 air quality is of considerable interest to the scientific community and to policymakers. Trend detection, the identification of statistically significant long-term changes, and attribution, linking change to specific clima-tological and anthropogenic forcings, are instrumental to this assessment. Detection and attribution are difficult because changes in pollutant concentrations of interest to policymakers may be much smaller than natural variations due to weather and climate. In addition, there are considerable differences in reported trends seemingly based on similar statistical methods and databases. Differences arise from the variety of techniques used to reduce nontrend variation in time series, including mitigating the effects of meteorology and the variety of metrics used to track changes. In this paper, we review the trend assessment techniques being used in the air pollution field and discuss their strengths and limitations in discerning and attributing changes in O3 to emission control policies.  相似文献   

18.
Vertical profiling with point samplers is an accepted method for quantifying the fluxes of PM10 from non-point fugitive dust sources, but is limited by uncertainty in estimates of the actual height of the dust plume, especially for plumes that exceed the highest sampling height. Agricultural land preparation operations in the San Joaquin Valley were monitored using upwind–downwind vertical PM10 profiles and data collected during the first successful experiment to include light detection and ranging (lidar), in 1998, were analyzed to provide modeling criteria for the 1996 and 1997 data. A series of six comprehensive PM10 tests with concurrent lidar data was examined to: (a) develop a framework for analyzing upwind–downwind point PM10 concentration profiles of land preparation operations (disking, listing, root cutting, and ripping) and (b) identify conditions under which the field sampling strategies affect the reproducibility of PM10 concentration measurements. Lidar data were used to verify that the plume heights and shapes extrapolated from the point sampler vertical profiles adequately described the plumes. The shortcomings of the vertical profiling technique and lidar methods are discussed in the light of developing efficient robust methods for accurate PM10 emissions quantification from complex non-point sources.  相似文献   

19.
Abstract

Atmospheric particulate matter (PM) samples from 12 sites in southern California, collected as part of the Southern California Children’s Health Study (SCCHS), were analyzed using gas chromatography/mass spectrometry (GC/MS) techniques. Ninety-four organic compounds were quantified in these samples, including n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAH), ho-panes, steranes, aromatic diacids, aliphatic diacids, resin acids, methoxyphenols, and levoglucosan. Annual average concentrations of all detected compounds, as well as average concentrations for three seasonal periods, were determined at all 12 sites for the calendar year of 1995. These measurements provide important information about the seasonal and spatial distribution of particle-phase organic compounds in southern California. Also, co-located samples from one site were analyzed to assess precision of measurement. Excellent agreement was observed between annual average concentrations for the broad range of organic compounds measured in this study. Measured concentrations from the 12 sampling sites were used in a previously developed molecular-marker source apportionment model to quantify the primary source contributions to the PM10 organic carbon and mass concentrations at these 12 sites. Source contributions to atmospheric PM from six important air pollution sources were quantified: gasoline-powered motor vehicle exhaust, diesel vehicle exhaust, wood smoke, vegetative detritus, tire wear, and natural gas combustion. Important trends in the seasonal and spatial patterns of the impact of these six sources were observed. In addition, contributions from meat smoke were detected in selected samples.  相似文献   

20.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号