首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C-O and C-O-C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C-C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C-O and C-O-C group was observed due to the collapse of the ether group. In SEM and Brunauer-Emmett-Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.  相似文献   

2.
Published data from nearly 2,000 coal samples comprising 250 coal beds from 17 states, representing many of the coal producing horizons in the USA, shows moderate correlation (0.7) between depth and methane content for high volatile coal ranks. Low-volatile rank coals average the highest methane content, 12.74 m3/ton (450 ft3/ton), subbituminous rank coals the lowest, <0.71 m3/ton (<25 ft3/ton). Experimentation under replicated in situ conditions of triaxial stress, pore pressure and temperature on Pittsburgh No. 8 coal indicate permeability decreases with increasing CO2 pressure, with an increase in strain in the coal associated with its swelling.  相似文献   

3.

Nitrogen-doped titanium dioxide (TiO2) and Fe–N-codoped TiO2 layers on fly ash cenospheres (FAC) as floating photocatalyst were successfully prepared through sol–gel method. Photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)–Vis diffuse reflectance spectroscopy (DRS), and nitrogen adsorption analyses for Brunauer–Emmett–Teller (BET) specific surface area. Photocatalytic efficiency of the prepared catalyst was evaluated through using the decomposition of Rhodamine B (RhB) as a model compound under visible light irradiation. Photocatalytic activity and kinetics of catalyst under visible light were detected in details from different Fe/Ti mole ratios by detecting photodegradation of RhB. Experimental results show that when the calcination temperature was 550 °C, the dosage of FAC was 3.0 g, and the mole ratio of Fe/Ti was 0.71 %; the synthesized Fe–N-TiO2/FAC photocatalyst presented as anatase phase and that N and Fe ions were doped into TiO2 lattice. The material’s specific surface area was 34.027 m2/g, and UV–Vis diffuse reflectance spectroscopy shows that the edge of the photon absorption has been red shifted up to 400–500 nm. Fe–N-codoped titanium dioxide on FAC had excellent photocatalytic activity during the process of photodegradation of RhB under visible light irradiation.

  相似文献   

4.

A heterogeneous catalyst comprising Keggin type polyoxometalate, silicotungstic acid (SiW12), and MCM-22 was synthesized using wet impregnation method and characterized by acidity measurement, BET, FT-IR, XRD, and SEM. Their catalytic activity was evaluated for the degradation of cationic organic dyes like methylene blue (MB), crystal violet (CV), and an azo dye Chryosidine Y (CY) in an aqueous solution. The experimental parameters such as catalyst amount, initial dye concentration, and contact time were studied for the degradation of dyes, and it was found that the cationic dyes like methylene blue and crystal violet show better activity as compared to azo dye Chryosidine Y. This may be attributed to better electrostatic interaction of these cationic dyes with the residual negative surface charge of the catalyst, due to presence of SiW12 ion as it is rich in surface oxygens and surface hydroxyl groups. The control experimental results showed that the presence of SiW12 at the surface of MCM-22 promoted the degradation reactions, and presence of multiple W–O bonds in polyoxometalate also played a key role in this reaction. The catalyst exhibits recycling ability without any significant loss in activity up to four cycles.

  相似文献   

5.
Activated ZnO powder has been prepared by procedures involving first its dissolution in nitric acid, then simultaneous treatment by adding NH4OH and CO2 bubbling leading to precipitation as Zn(OH)CO3 (ZH) and further thermal decomposition of ZH at 400 °C. The gas evolution leads to formation of pores and increase in the specific surface area. Chemically activated M/ZnO powders doped with Mn, Co, Ni, Cu, and Ag have been obtained by the impregnation method. The samples have been characterized by ultraviolet-visible (UV-Vis) spectroscopy, diffuse reflectance (DR) UV-Vis, X-ray diffraction (XRD), single point Brunauer–Emmet–Teller (BET), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) methods. The experiments have shown that metal-doped activated ZnO powders possess higher photocatalytic activities in oxidative discoloration of model contaminant textile coloring dye Reactive Black 5 in slurry reactor compared to that of the pure ZnO. The XRD and XPS data have shown the presence of defects, nonstoichiometricity implying the formation of solid solutions. Copper-doped (1.5 wt%) activated ZnO (Cu2+ replaces Zn2+) is outstanding in its photocatalytic performance in discoloration of the dye due to the higher specific surface area and improved charge carrier separation.  相似文献   

6.
Bae PH  Hwang YJ  Jo HJ  Kim HJ  Lee Y  Park YK  Kim JG  Jung J 《Chemosphere》2006,63(6):1041-1047
Plasma treatment was evaluated as an alternative clean desizing technology in this work. As indicated by weight loss, O2 plasma treatment efficiently removed sizing agents such as polyvintyl alcohol (PVA), polyacrylic acid esters and their mixture (MIX) on polyethylene terephthalate (PET) fabrics. SEM pictures of the plasma treated samples directly proved the disappearance of the sizing agents. XPS analysis showed apparent changes in chemical composition and functional groups of the PET surface after O2 plasma treatment. Carbon content decreased due to the removal of sizing agents while oxygen content increased. O2 plasma treatment also increased hydrophilic functional groups of sizing agents, which is confirmed by C1s and O1s deconvolution analyses. After O2 plasma treatment, the PET fabric was subjected to conventional desizing process at different temperatures. Except for the PET fabric sized with PVA, plasma-treated fabrics showed more efficient desizing results when compared with untreated fabrics. Furthermore, the desizing effluent from the treated fabric gave lower TOC, COD and BOD values.  相似文献   

7.
Carbon dioxide emissions, on an equivalent energy basis, were calculated for 504 North American coals to explore the effects of coal rank and sulfur content on CO2 emissions. The data set included coals ranging in rank from lignite through low-volatile bituminous from 15 U.S. states and Alberta, Canada. Carbon dioxide emissions were calculated from the carbon content and gross calorific value of each coal. The lowest CO2 emissions are calculated for the high-volatile bituminous coals (198 to 211 lbs CO2/MMBtu) and the highest for lignites and subbituminous coals (209 to 224 lbs CO2/MMBtu). The lower CO2 emissions from the high-volatile bituminous coals result in part from their generally higher sulfur content. However, even at equivalent sulfur contents the high-volatile bituminous coals give lower CO2 emissions than the lower-rank coals. On average, the lowerrank coals produce 5 percent more CO2 upon combustion than the highvolatile bituminous coals, on the basis of gross calorific value. This difference increases to 9 percent on the basis of estimated net calorific value. The net calorific value is better indicator of power plant energy production than the gross calorific value. The difference in CO2 emissions resulting from the use of high-volatile bituminous coals and lower-rank coals is of the same order of magnitude as reductions expected from near-term combustion efficiency improvements. These results are useful to those interested in current and future CO2 emissions resulting from coal combustion.  相似文献   

8.
煤矸石是煤炭在开采、洗选过程中产生的固体废弃物,其中二氧化硅、氧化铝和碳占到矸石总量的90%以上,又是一种可以利用的资源。实验以山西潞安煤矿的洗矸为原料,采用SEM、IR和XRD等分析测试手段对不同煅烧温度下的煤矸石进行微观形貌、化学键变化和矿物组成的分析研究,确定氧化铝的活化温度区间;并根据煤矸石的活化机理,选择提高氧化铝溶出率的添加剂。实验结果为:煤矸石中氧化铝的活化温度区间为600~850℃;酸浸过程中添加氟化钠可以打开煤矸石中的SiO2—Al2O3,使氧化铝溶出率达到90%以上,和通常条件下氧化铝的溶出率相比提高20%左右。本研究为煤矸石高值利用提取氧化铝提供了技术基础,也为粉煤灰等低铝含量矿物的开发利用提供借鉴。  相似文献   

9.
Fe2O3 and CeO2 modified activated coke (AC) synthesized by the equivalent-volume impregnation were employed to remove elemental mercury (Hg0) from simulated flue gas at a low temperature. Effects of the mass ratio of Fe2O3 and CeO2, reaction temperature, and individual flue gas components including O2, NO, SO2, and H2O (g) on Hg0 removal efficiency of impregnated AC were investigated. The samples were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with optimal mass percentage of 3 % Fe2O3 and 3 % CeO2 on Fe3Ce3/AC, the Hg0 removal efficiency could reach an average of 88.29 % at 110 °C. Besides, it was observed that O2 and NO exhibited a promotional effect on Hg0 removal, H2O (g) exerted a suppressive effect, and SO2 showed an insignificant inhibition without O2 to some extent. The analysis of XPS indicated that the main species of mercury on used Fe3Ce3/AC was HgO, which implied that adsorption and catalytic oxidation were both included in Hg0 removal. Furthermore, the lattice oxygen, chemisorbed oxygen, and/or weakly bonded oxygen species made a contribution to Hg0 oxidation.  相似文献   

10.
Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.  相似文献   

11.
To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg?1) was nearly tenfold as much as that of saline soil (229.49 mg kg?1). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O–H, C=O, and C–O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM–EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.  相似文献   

12.
Abstract

In this study, the similarities and differences of the adsorption mechanisms between dichlorvos and pymetrozine and coconut fiber biowaste sorbent (CF-BWS) were investigated. CF-BWS was produced using the slow pyrolysis process at 600?°C for 4?h. HCl acid modification was used to improve the specific surface area. The properties of CF-BWS were analyzed by SEM, FT-IR, BET, and pHpzc. The adsorption kinetics of dichlorvos and pymetrozine on the CF-BWS were well explained by the pseudo-second-order model. The adsorption isotherms for both insecticides were followed the Langmuir isotherm. The difference in molecular structures and surface chemistry caused the difference in adsorption mechanisms of both insecticides. The pore-filling and the hydrophobic interactions were the key mechanisms for both insecticide adsorptions. However, the π–π electron donor–acceptor interaction played the major role in the pymetrozine adsorption but hardly impacted on the adsorption of dichlorvos. The hydrogen bonding mechanism was pronounced in the pymetrozine adsorption, but it had little influence on the dichlorvos adsorption. The CF-BWS is exhibited as an excellent material for the removal of both pollutants and has high potential to be used further as the adsorbent in water treatment process.  相似文献   

13.
Novel magnetic carbonaceous bio-char was hydrothermal prepared from microalgae under different loadings of iron and its structures and surface chemistry were characterized with Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen adsorption-desorption isotherm (BET). The morphology of bio-char changed from sheet to particle as iron loading increased and its surface area also increased. When 3.0 g of dried microalgae and 6.0 mmol iron salt ((NH4)2SO4·FeSO4·6H2O) were mixed and treated, the obtained bio-char possessing the highest amount of oxygen-containing functional groups resulted in the best adsorption performance on tetracycline (TC). This adsorption process was fitted to Langmuir adsorption isotherm and the maximum adsorption capacity was 95.86 mg/g, which is higher than other bio-char reported. The iron loading contributed to the higher adsorption capacity of bio-char, which may be due to three factors, the high surface area, more hydrogen bonding, and bridging effects of the structural Fe for TC. Our data suggest that bio-char may have more important role in stabilization of pollutants in the environment.  相似文献   

14.

In this paper, a crosslinked carboxymethyl starch (CCMS) was prepared with corn starch as the raw material, epichlorohydrin as the crosslinking agent, and chloroacetic acid as the etherifying agent through a series of crosslinking, alkalization, and etherification reactions, respectively. Nano-TiO2 was loaded onto the surface of the CCMS by the sol-gel method to obtain a TiO2/CCMS composite. The TiO2/CCMS composite was characterized by XPS, XRD, SEM, and BET. XPS showed that the surface chemical composition of the TiO2/CCMS composite material contained titanium; XRD diffraction patterns indicated that the crystal form of the TiO2/CCMS composite was a combination of the CCMS and anatase TiO2. The surface morphology obtained by SEM showed that there were nano-TiO2 particles on the surface of the CCMS. The specific surface area of the TiO2/CCMS composite was larger than that of CCMS. The adsorption-photodegradation performance of the TiO2/CCMS composite was also studied under UV irradiation, and the results showed that significant adsorption-photodegradation synergies occurred.

  相似文献   

15.
The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K2O (18.55 %), and P2O5 (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R 2?>?0.99), with the highest k 2 value of the order 105. Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).  相似文献   

16.

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).

Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.

  相似文献   

17.
Predicting extents of mercury oxidation in coal-derived flue gases   总被引:1,自引:0,他引:1  
The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O2, H2O, HCl), emissions (NO(X), SO(X), CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl2 and CaCl2 injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NO(X), LOI, and residence time, as well as the most important coal properties, including coal-Cl.  相似文献   

18.

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

  相似文献   

19.
The purpose of this study was to investigate adsorption characteristic of swine manure biochars pyrolyzed at 400 °C and 700 °C for the removal of Cu(II) ions from aqueous solutions. The biochars were characterized using BET surface area, Fourier transform infrared spectroscopy (FTIR), zeta potential, scanning electron microscopy/energy dispersive spectrometer (SEM–EDS), and X-ray diffraction (XRD). The adsorption of Cu(II) ions by batch method was carried out and the optimum conditions were investigated. The adsorption processes of these biochars are well described by a pseudo-second-order kinetic model, and the adsorption isotherm closely fitted the Sips model. Thermodynamic analysis suggested that the adsorption was endothermic. The maximum Cu(II) adsorption capacities of biochars derived from fresh and composted swine manure at 400 °C were 17.71 and 21.94 mg g?1, respectively, which were higher than those at 700 °C. XRD patterns indicated that the silicate and phosphate particles within the biochars served as adsorption sites for Cu(II). The removal of Cu(II) ions from industrial effluent indicated that the fresh swine manure biochar pyrolyzed at 400 °C can be considered as an effective adsorbent.  相似文献   

20.

Competitive adsorption of As(V) and Sb(V) at environmentally relevant concentrations onto ferrihydrite was investigated. Batch experiments and XPS analyses confirmed that in a binary system, the presence of Sb(V) exhibited a slight synergistic effect on As(V) adsorption. XPS analyses showed that As(V) and Sb(V) adsorption led to obvious diminishment of Fe–O–Fe and Fe–O–H bonds respectively. At pH of 9, a more significant decrease of Fe–O–Fe was observed in the binary system than that in a single system, indicating that As(V) displayed an even stronger interaction with lattice oxygen atoms under competitive conditions. Basically, ionic strength demonstrated a negligible or positive influence on As(V) and Sb(V) adsorption in binary system. Study of adsorption sequence also indicated that the presence of Sb(V) showed a promotion effect on As(V) adsorption at neutral pHs. Considering that co-contamination of As and Sb in waters has been of great concern throughout the world, our findings contributed to a better understanding of their distribution, mobility, and fate in environment.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号