首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CF Systems Organic Extraction Process was used to remove PCBs from contaminated sediment dredged from the New Bedford Harbor. This work was done as part of a field demonstration under EPA's Superfund Innovative Technology Evaluation (SITE) program. The purpose of the SITE program is to provide an independent and objective evaluation of innovative waste remediation processes. The purpose of this paper is to present the results of the SITE demonstration of this technology. Results of the demonstration tests show that the system, which uses liquefied propane, successfully removed PCBs from contaminated sediments in New Bedford Harbor. Removal efficiencies for all test runs exceeded 70 percent. Some operational problems occurred during the demonstration which may have affected the efficiency with which PCBs were removed from the dredged sediment. Large amounts of residues were generated from this demonstration project. Costs for using this process are estimated to be between $150/ton and $450/ton.  相似文献   

2.
Between September 5 and October 5,1989 a field demonstration of the NovaTerra, Inc. Detoxifier [formerly called Toxic Treatment (USA)] was performed by the U.S. EPA under the Superfund Innovative Technology Evaluation (SITE) program. The NovaTerra Detoxifier process injects steam and hot air directly into the ground to vaporize and strip volatile and semivolatile organics. Two augers loosen and homogenize the soil during the stripping process. The steam, hot air and organics are carried to the soil surface and collected for treatment.

The field demonstration was performed at the GATX Annex Terminal located at the Port of Los Angeles, San Pedro, California. Approximately 17 percent of the 5.2 acre site is contaminated with chlorinated solvents, plasticizers, coatings, adhesives and paint additives, and other miscellaneous chemicals from aboveground storage tanks and transfer operations to railroad cars.

The objectives of this SITE Demonstration were to determine the in situ soil concentrations before and after treatment, quantify process stream emissions (fugitive and sidestreams), determine process operating conditions, and determine if vertical migration of contaminants is occurring. Results from the SITE demonstration showed that a substantial amount of the VOCs were removed, about half the SVOCs were removed, there was very little fugitive air emissions from the operation, and what little downward migration occured (if any) was inconsequential.  相似文献   

3.
The CF Systems Organic Extraction Process was used to remove PCBs from contaminated sediment dredged from the New Bedford Harbor. This work was done as part of a field demonstration under EPA’s Superfund Innovative Technology Evaluation (SITE) program. The purpose of the SITE program is to provide an independent and objective evaluation of innovative waste remediation processes. The purpose of this paper is to present the results of the SITE demonstration of this technology. Results of the demonstration tests show that the system, which uses liquefied propane, successfully removed PCBs from contaminated sediments in New Bedford Harbor. Removal efficiencies for all test runs exceeded 70 percent. Some operational problems occurred during the demonstration which may have affected the efficiency with which PCBs were removed from the dredged sediment. Large amounts of residues were generated from this demonstration project. Costs for using this process are estimated to be between $150/ton and $450/ton.  相似文献   

4.
A demonstration of the GHEMFIX solidification/stabilization process was conducted under the United States Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) program. The demonstration was conducted in March 1989, at the Portable Equipment Salvage Company (PESC) uncontrolled hazardous waste site in Clackamas, Oregon. Waste containing lead, copper, and polychlorinated biphenyls (PCBs) from four different areas of the site were treated. Results showed substantial reduction of leachable lead and copper between the untreated waste and treated waste utilizing the EPA Toxicity Characteristics Leaching Procedure (TCLP) test. The effectiveness of this process for immobilizing PCBs could not be determined since the raw waste did not leach PCBs at high concentrations, utilizing the TCLP test. Data from other leaching tests for lead and copper would need to be utilized as input into a site specific groundwater model to determine whether solidification/stabilization would be an acceptable remedy for the site. Physical testing results indicated durability in exposed conditions.  相似文献   

5.
Under the Superfund Innovative Technology Evaluation (SITE) Program, a technology developed by AWD Technologies, Inc. was demonstrated in September 1990. This paper presents the major results of the SITE demonstration of AWD Technologies’ AquaDetox®ISVE treatment system designed for simultaneous on-site treatment of contaminated groundwater and soil-gas. The groundwater and soil at the demonstration site were contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE). The AWD technology was evaluated on the basis of the removal efficiencies of TCE and PCE from the contaminated groundwater and soil-gas. The conclusions drawn from these evaluations are: (1) the system achieved removal efficiencies as high as 99.99percent for groundwater and 99.9 percent for soil-gas; (2) the effluent groundwater was in compliance with the regulatory discharge requirements of 5 fig/L each for TCE and PCE for all test runs; (3) the demonstrated 1,000 gpm system has an estimated capital cost of $4.3 million and annual operating and maintenance cost of approximately $820,000.  相似文献   

6.
Under the Superfund Innovative Technology Evaluation (SITE) Program, a technology developed by AWD Technologies, Inc. was demonstrated in September 1990. This paper presents the major results of the SITE demonstration of AWD Technologies' AquaDetox/SVE treatment system designed for simultaneous on-site treatment of contaminated groundwater and soil-gas. The groundwater and soil at the demonstration site were contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE). The AWD technology was evaluated on the basis of the removal efficiencies of TCE and PCE from the contaminated groundwater and soil-gas. The conclusions drawn from these evaluations are: (1) the system achieved removal efficiencies as high as 99.99 percent for groundwater and 99.9 percent for soil-gas; (2) the effluent groundwater was in compliance with the regulatory discharge requirements of 5 micrograms/L each for TCE and PCE for all test runs; (3) the demonstrated 1,000 gpm system has an estimated capital cost of $4.3 million and annual operating and maintenance cost of approximately $820,000.  相似文献   

7.
This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations were performed for the primary purpose of reclaiming lead from spent lead-acid batteries. Metallic lead and lead compounds are generally the principal contaminants of concern in soils and waste deposits (i.e., buried, piled, landfilled waste) at these sites. Other metals (e.g., cadmium, copper, arsenic, antimony, and selenium) are often present at LBRS, but usually at much lower concentrations than lead and often present below hazardous concentrations. This article is primarily based on experience gained from: (1) Superfund site investigation, removal, and remedial actions, and (2) development and demonstration of control technologies under the Superfund Innovative Technology Evaluation (SITE) Program. The primary remedial options for lead contaminated soils and waste deposits include: (1) no action, (2) off-site disposal, (3) containment, (4) immobilization, (5) separation with resource recovery, and (6) separation without resource recovery. In spite of the toxicity of lead at low concentrations, the relative immobility of lead and site-specific risk assessments can still result in the selection of no action or containment remedies. Solidification/stabilization of lead-contaminated soils has been implemented at three Superfund sites and is the selected remedy at several others. Separation technologies (e.g., screening, extraction) are attractive because, if successful, they actually remove the contaminant from the environmental media. Separation technologies also offer the possibility that a valuable product (e.g., lead, plastic, energy) can be recovered, but careful consideration of economic and technical factors are required. Compared to the implementation of containment and solidification I stabilization remedies, separation technologies tend to be relatively novel, complex, and costly.  相似文献   

8.
This paper presents an EPA evaluation of the first field demonstration of an in situ stabilization/solidification process for contaminated soil under the EPA Superfund Innovative Technology Evaluation (SITE) program. Demonstration of this process was a joint effort of two vendors: ? International Waste Technologies (IWT) of Wichita, Kansas, who provided the treatment process, specifically the proprietary additive called HWT-20, and

? Geo-Con, Inc., of Pittsburgh, Pennsylvania, who provided both engineering and hardware for the in situ soil treatment.

The field demonstration took place in April, 1988 at a site in Hialeah, Florida, contaminated mainly with polychlorinated biphenyls (PCBs). EPA tested the soil before and after treatment and the EPA evaluation of this process is based on results from this testing. A year later, in April 1989, EPA tested again the treated soil and results of that testing were compared to those of the demonstration. Results of the EPA evaluation of the IWT process, the Geo-Con performance, and treatment costs are discussed separately.  相似文献   

9.
This paper summarizes a joint Superfund Innovative Technology Evaluation (SITE) project on slurry-phase biodegradation and a project to collect information for the data base on Best Demonstrated Available Technologies (BOAT). In this 12-week study, a creosote contaminated soil from the Burlington Northern Superfund site in Brainerd, Minnesota was used to evaluate the effectiveness of the bioslurry reactors. During the demonstration, five 64-liter stainless steel bioreactors, equipped with agitation, aeration and temperature controls were used. The pilot scale study employed a 30 percent slurry, an inoculum of indigenous polynuclear aromatic hydrocarbon (PAH) degraders, and inorganic nutrients.

Total PAH degradation averaged 93.4 ± 3.2 percent over all five operating reactors in the 12 weeks with 97.4 percent degradation of the 2- and 3-ring PAHs and 90 percent degradation of the 4- to 6-ring PAHs. A study of the air emissions, both semivolatile compounds such as naphthalene, anthracene, and phenanthrene and volatile compounds such as toluene, xylene, and benzene, from the units showed that the greatest amount of emissions occurred during the loading of the reactors and during the first few days of operation. Therefore, it may not be cost-effective to require elaborate emissions controls unless there are significant quantities of volatile compounds present in the soil or water to be treated in a bioslurry reactor system.  相似文献   

10.
Abstract

Superfund sites frequently contain both heavy metals and organic hazardous waste. If not properly controlled, the metals may be changed to a more leachable form and may also be emitted to the atmosphere via the exhaust stack. This paper documents a batch kiln R&D test program to solve these metal-related problems. It was performed under the U.S. EPA’s SITE (Superfund Innovative Technology Evaluation) Emerging Technology Program. Allis Mineral Systems has developed the Thermal Encapsulation Process. Metals with limits set by EPA’s TCLP (Toxicity Characteristic Leaching Procedure) test and BIF (boiler and industrial furnace) stack emission regulations, such as cadmium, chromium, and lead, are the initial target of this process. This process, while unproven in these areas, may also apply to mixed waste (EPA hazardous waste/low-level radioactive wastes) and may also benefit commercial hazardous waste or Superfund thermal treatment systems. The results of the SITE tests were positive: strong, durable nodules were produced with excellent crush strength and improved resistance to leaching. Feed preparation, particularly control of moisture content, was found to be a key element in initiation of agglomeration. A good correlation was found between decreasing TCLP metals leachate levels and increasing crush strength.  相似文献   

11.
Abstract

The patented Carver-Greenfield (C-G) Process®, a combination of dehydration and solvent extraction treatment technologies, has a wide range of uses in separating hydrocarbon solvent-soluble hazardous organic contaminants (indigenous oil) from sludges, soils, and industrial wastes. As a result of this treatment, the products from a C-G Process facility are: ? Clean, dry solids which are typically suitable for disposal in nonhazardous landfills;

? Water which is treatable in an industrial or Publicly Owned Treatment Works (POTW) wastewater treatment facility;

? Extracted indigenous oil containing hydrocarbon soluble contaminants which may be recycled or reused or disposed of at less cost because its volume is smaller than the original waste feed.

The C-G Process was demonstrated on spent oily drilling fluids as part of the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. This paper summarizes the use of the C-G Process for economical treatment and minimization of hazardous refinery wastes, reviews the SITE program results, and describes extending the C-G Process technology to treatment of other wastes. Estimated treatment costs are presented.  相似文献   

12.
The U.S. Environmental Protection Agency (EPA), in cooperation with the Toronto Harbour Commissioners (THC), conducted a Superfund Innovative Technology Evaluation (SITE) demonstration of the THC Soil Recycle Treatment Train. The treatment train consists of three technologies operated in sequence: a soil wash process, a metals removal process, and a biological treatment process. The THC conducted an extensive demonstration of the treatment train at a 55 tons per day pilot plant in order to evaluate an approach for remediation of industrial/commercial sites that are situated in the Toronto Port Industrial District (PID). Three soils were processed during the THC demonstration. The EPA SITE demonstration project examined, in detail, soil processing from one of the sites being evaluated as part of the overall THC project. Contaminants included organic compounds and heavy metals. It has been estimated by THC that as much as 2,200,000 tons of soil from locations within the PID may require some form of treatment due to heavy metal and/or organic contamination that resulted from various industrial processing operations. The objective of the SITE demonstration was to evaluate the technical effectiveness of the process in relation to THC’s target criteria.

Gravel and sand that met the THC target criteria for medium to fine soil suitable for industrial/commercial sites was produced. The fine soil from the biological treatment process did not meet the target level of 2.4 ppm for benzo(a)pyrene. However, there was a significant reduction in polynuclear aromatic hydrocarbon (PAH) compounds. The metals removal process achieved reductions of greater than seventy percent for copper, lead, nickel, and zinc.  相似文献   

13.
The U.S. Environmental Protection Agency has implemented a rigorous quality assurance (QA) program to ensure that the performance data generated during their Superfund Innovative Technology Evaluation (SITE) Demonstration projects are of known and adequate quality to support decisions to use such technologies for hazardous waste site characterizations or remediations. A general overview of the ways in which this QA program has been conducted and of the results it has produced is presented.  相似文献   

14.
ABSTRACT

The U.S. Environmental Protection Agency’s (EPA) Superfund Technical Assistance Response Team (START) in cooperation with EPA’s Superfund Innovative Technology Evaluation (SITE) program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquefied propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducted in Golden, CO at Hazen Research, Inc., using CF-Systems’ trailer-mounted organics extraction unit. Approximately 1,000 pounds of soil, with an average poly-chlorinated biphenyl (PCB) concentration of 260 mg/kg, was obtained from a remote Superfund site. Six 100-pound batches of the contaminated soil were extracted using multiple extraction sequences. Three of the six batch runs were subjected to three extraction sequences each, so that process variability could be evaluated. Results showed that PCB removal efficiencies varied between 91.4 and 99.4%, with the propane-extracted soils retaining low concentrations of PCBs (19.0–1.8 mg/kg). Removal efficiencies of oil and grease (O&G) were found to be 96.0 to 99.6% with propane-extracted soils retaining O&G concentrations from 279 to <20 mg/kg. Overall extraction efficiency was found to be dependant upon the numberof extraction cycles used.  相似文献   

15.
A pilot-scale soil washing process, patented by BioTrol, Inc., was demonstrated on soil contaminated by wood treating waste, primarily pentachlorophenol (PCP) and creosote-derived polynuclear aromatic hydrocarbons (PAHs). Although soil washing was the main object of this demonstration, the treatment train that was evaluated included two other BioTrol technologies for treatment of waste streams from the soil washer. The three technologies were: ? The BioTrol Soil Washer (BSW)—a volume reduction process, which uses water to separate contaminated soil fractions from the bulk of the soil.

? The BioTrol Aqueous Treatment System (BATS)—a biological water treatment process.

? The Slurry Bioreactor (SBR)—a BioTrol biological slurry treatment process conducted in an EIMCO BIOLIFTtm reactor.

The sandy soil at the site, consisting of less than 10 percent of fines, was well suited for treatment by soil washing. The soil washer was evaluated in two tests on soil samples containing 130 ppm and 680 ppm of PCP, respectively.

The BSW successfully separated the feed soil (dry weight basis) into 83 percent of washed soil, 10 percent of woody residues, and 7 percent of fines. The washed soil retained about 10 percent of the feed soil contamination while 90 percent of the feed soil contamination was contained within the woody residues, fines, and process water.

The soil washer achieved up to 89 percent removal of PCP and 88 percent of total PAHs, based on the difference between their levels in the as-is (wet) feed soil and the washed soil. PCP concentrations of 14 ppm and 87ppm in the washed soil were achieved from PCP concentrations of 130 ppm and 680ppm in the feed soil. Concentrations of total PAHs were reduced from 247 ppm to 42 ppm and 404 ppm to 48 ppm, respectively, in the two tests.

The BATS degraded up to 94 percent of PCP in the process water from soil washing. PAH removal could not be determined due to low influent concentrations.

The SBR achieved over 90 percent removals of PCP and 70 to 90 percent removals of PAHs from the slurry of contaminated fines from soil washing. However, steady state operation was not achieved during the single test and the results were variable.

Cost of a commercial-scale soil washing, assuming use of all three technologies, was estimated to be $168 per ton of soil treated. Incineration of woody material accounts for 76 percent of the cost.  相似文献   

16.
The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five years. The ETP was established under the Superfund Amendments and Reauthorization Act (SARA) of 1986. The ETP complies with the goal of the SITE Program to promote, accelerate and make commercially available the development ofalternative /innovative treatment technologies for use at Superfund sites.

Technologies are submitted to the ETP through yearly solicitations for Preproposals. Following a technical review, chosen applicants are asked to submit a detailed project proposal and a cooperative agreement application that requires Developer I EPA cost sharing. EPA co-funds selected Developers for one to two years. Second-year funding requires documentation of significant progress during the first year. Facilities, equipment, data collection, performance and development are monitored throughout the project. The U. S. Department of Energy (DOE) and the U. S. Air Force (USAF) are participants in the ETP. DOE has co-funded ETP projects since 1990 and the USAF since 1991.

A primary goal of the ETP is to move developed technologies to the field-demonstration stage. Therefore, a developer may be considered for participation in the SITE Demonstration Program provided performance in the ETP indicates the technology is field-ready for demonstration and evaluation.

Six technology categories: biological, chemical, materials handling, physical, solidification/ stabilization and thermal, are presently in the ETP.

Technologies of primary interest to EPA are those that can treat complex mixtures of hazardous organic and inorganic contaminants and provide improved solids handling and/orpretreatment.

An account of the background and progress of the ETP’s first five years is presented in this paper. Technologies currently in the ETP, including those selected from the fifth (EOS) solicitation, are noted, and developers, along with EPA Project Managers, are listed.  相似文献   

17.
The Superfund Innovative Technology Evaluation (SITE) Program is now in its sixth year of demonstrating technologies applicable to Superfund sites. The SITE Program, conducted by the U.S. Environmental Protection Agency's Risk Reduction Engineering Laboratory, is intended to accelerate the use of new and innovative treatment processes as well as evaluate innovative measurement and monitoring techniques. Within the SITE Program, the Demonstration Program and the Emerging Technologies Program are responsible for innovative/alternative waste treatment technology development. Separate and parallel activities are progressing for development and evaluation of measuring and monitoring technologies as well as technology transfer operations.  相似文献   

18.
The Superfund Innovative Technology Evaluation (SITE) Program is now in its sixth year of demonstrating technologies applicable to Superfund sites. The SITE Program, conducted by the U.S. Environmental Protection Agency’s Risk Reduction Engineering Laboratory, is intended to accelerate the use of new and innovative treatment processes as well as evaluate innovative measurement and monitoring techniques. Within the SITE Program, the Demonstration Program and the Emerging Technologies Program are responsible for innovative/ alternative waste treatment technology development. Separate and parallel activities are progressing for development and evaluation of measuring and monitoring technologies as well as technology transfer operations.  相似文献   

19.
20.
The Superfund Amendments and Reauthorization Act of 1986 (SARA) directed the U.S. Environmental Protection Agency (EPA) to establish an Alternative/Innovative Treatment Technology Research and Demonstration Program. The EPA’s Office of Solid Waste and Emergency Response and the Office of Research and Development established a program called the Superfund Innovative Technology Evaluation (SITE) Program to accelerate the development and use of innovative cleanup technologies at hazardous waste sites. The SITE Program comprises of five areas: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technologies Development Program, the Innovative Technologies Program, and the Technology Transfer Program.

This paper discusses the Emerging Technology Program (ETP) that supports the development of technologies that have been successfully tested at bench-scale level. Before a technology can be accepted into the Emerging Technology Program, sufficient data must be available to validate its basic concepts. The ETP enters into a co-funding effort with developers for a one- or two-year effort. Developers are responsible for contributing financial support and conducting the developmental research. After development and data collection, the technology’s performance is documented and a report is prepared, which may include recommendations for further developing the technology. If test results are encouraging, a technology may proceed with approval to a field demonstration.

The purpose of this article is to provide the reader with (1) an introduction to the Emerging Technology Program (2) an understanding of how the program operates (3) a summary of those technologies currently being tested and evaluated under the program and (4) information on how to apply to the program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号