首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this research was to investigate a sequentially loaded and regenerated granular activated carbon (GAC) biofilter system and to determine whether regenerative ozonation/advanced oxidation could improve the removal and biodegradation of a volatile organic compound from a contaminated airstream. Bench-scale reactors were constructed to operate in a manner analogous to a commercially available system manufactured by Terr-Aqua Environmental Systems (only with longer contact time). The GAC system consisted of two GAC biofilter beds that operated in a cyclical manner. On a given day, the first GAC bed adsorbed methyl isobutyl ketone from a simulated waste airstream, while the second bed underwent regeneration; then on the next day, the second bed was in the adsorption mode while the first was regenerated. Three bench-scale systems were used to compare the performance under three operating conditions: (1) ozone/ associated oxidant regeneration of a GAC biofilter system that was seeded with microorganisms from a field site, (2) a humid air regeneration of a seeded GAC biofilter, and (3) a humid air regeneration of an unseeded GAC biofilter. For the advanced oxidant regenerated GAC biofilter, a maximum removal efficiency of >95% was achieved with an empty bed contact time of 148 sec and an influent concentration of 125 ppm methyl isobutyl ketone, and 90-95% was achieved at 148-sec empty bed contact time and a 1150-ppm influent.  相似文献   

2.
Cai Z  Kim D  Sorial GA 《Chemosphere》2007,68(6):1090-1097
Two independent parallel trickling bed air biofilters (TBABs) ("A" and "B") with two different typical VOC mixtures were investigated. Toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) were the target VOCs in the mixtures. Biofilter "A" was fed equal molar ratio of the VOCs and biofilter "B" was fed a mixture based on EPA 2003 emission report. Backwashing and substrate starvation operation were conducted as biomass control. Biofilter "A" and "B" maintained 99% overall removal efficiency for influent concentration up to 500 and 300 ppmv under backwashing operating condition, respectively. The starvation study indicated that it can be an effective biomass control for influent concentrations up to 250 ppmv for biofilter "A" and 300 ppmv for "B". Re-acclimation of biofilter performance was delayed with increase of influent concentration for both biofilters. Starvation operation helped the biofilter to recover at low concentrations and delayed re-acclimation at high concentrations. Furthermore, re-acclamation for biofilter "B" was delayed due to its high toluene content as compared to biofilter "A". The pseudo first-order removal rate constant decreased with increase of volumetric loading rate for both biofilters. MEK and MIBK were completely removed in the upper 3/8 media depth. While biofilter depth utilization for the removal of styrene and toluene increased with increase of influent concentrations for both biofilters. However, toluene removal utilized more biofilter depth for biofilter "B" as compared to biofilter "A".  相似文献   

3.
ABSTRACT

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

4.
Microwave process for volatile organic compound abatement   总被引:5,自引:0,他引:5  
The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

5.
Biofiltration of gasoline vapor by compost media   总被引:2,自引:0,他引:2  
Gasoline vapor was treated using a compost biofilter operated in upflow mode over 4 months. The gas velocity was 6 m/h, yielding an empty bed retention time (EBRT) of 10 min. Benzene, toluene, ethylbenzene and xylene (BTEX) and total petroleum hydrocarbon (TPH) removal efficiencies remained fairly stable approximately 15 days after biofilter start-up. The average removal efficiencies of TPH and BTEX were 80 and 85%, respectively, during 4 months of stable operation. Biodegradation portions of the treated TPH and BTEX were 60 and 64%, respectively. When the influent concentration of TPH was less than 7800 mg TPH/m3, approximately 50% of TPH in the gas stream was removed in the lower half of the biofilter. When the influent concentration of BTEX was less than 720 mg BTEX/m3, over 75% of BTEX in the gas stream was removed in the lower half of the biofilter. Benzene removal efficiency was the lowest among BTEX. A pressure drop could not be detected over a 1-m bed height at a gas velocity of 6 m/h after approximately 4 months of operation. Results demonstrated that BTEX in gasoline vapor could be treated effectively using a compost biofilter.  相似文献   

6.
采用生物滤床处理NO模拟废气,研究了停留时间(EBRT)、有机物浓度等在生物硝化去除NO技术中的作用过程.实验结果表明,EBRT和有机物含量是影响NO硝化去除效率的主要因素,NO去除效果随着有机物含量和EBRT的增大而提高;当进口浓度50 mg/m3,营养液中葡萄糖40 mg/L,EBRT>3 min时,NO去除率达95%以上.比较自养菌和异养菌对NO硝化去除的效果,异养菌的去除效率提高20%~30%,具有广泛应用前景.  相似文献   

7.
Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppm(v)), methyl ethyl ketone (12 ppm(v)), toluene (29 ppm(v)), ethylbenzene (10 ppm(v)), and p-xylene (10 ppm(v)). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m(-3) hr(-1) and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were, more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

8.
ABSTRACT

This research investigated and compared the use of both bench- and pilot-scale biofilters to determine the effectiveness of controlling styrene, methyl ethyl ketone (MEK), and acetone emissions from an industrial gas waste stream. Critical operating parameters, including contaminant loading rate, temperature, and empty bed contact time, were manipulated in both the laboratory and field. At steady-state conditions, the bench and pilot-scale biofilters showed a 99% removal efficiency for styrene when the contaminant loading rate was less than 50 g m-3hr-1 and 40 g m-3hr-1, respectively. Although few data points were collected in the pilot-scale reactor where the styrene load was greater than 40 g m-3hr-1, the total organic contaminant load including both MEK and acetone typically ranged between 50 g m-3hr-1 and 80 g m-3hr-1. Greater than 99% removal efficiencies were observed for acetone and MEK in the pilot-scale biofilter at all evaluated loading rates. Also studied were biofilter acclimation and re-acclimation periods. In inoculated bench and pilot biofilter systems, microbial acclimation to styrene was achieved in less than five days. In comparison, no MEK degrading microbial inoculum was added, so during the first months of pilot-scale biofilter operation, MEK removal efficiencies lagged behind those noted with styrene.  相似文献   

9.
ABSTRACT

The overall objective of this pilot-scale study is to investigate the technical feasibility of the removal and destruction of organic contaminants in water using adsorption and photocatalytic oxidation. The process consists of two consecutive operational steps: (1) removal of organic contaminants using fixed-bed adsorption; and (2) regeneration of spent adsorbent using photocatalysis or steam, followed by decontamination of steam condensate using photocatalysis. The pilot-scale study was conducted to evaluate these options at a water treatment plant in Wausau (Wisconsin) for treatment of groundwater contaminated with tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cis-DCE), toluene, ethylbenzene (EB), and xylenes. The adsorbents used were F-400 GAC and Ambersorb 563.

In the first treatment strategy, the adsorbents were impregnated with photocatalyst and used for the removal of aqueous organics. The spent adsorbents were then exposed to ultraviolet light to achieve photocatalytic regeneration. Regeneration of adsorbents using photocatalysis was observed to be not effective, probably because the impregnated photocatalyst was fouled by background organic matter present in the groundwater matrix.

In the second treatment strategy, the spent adsorbents were regenerated using steam, followed by cleanup of steam condensate using photocatalysis. Four cycles of adsorption and three cycles of steam regeneration were performed. Ambersorb 563 adsorbent was successfully regenerated using saturated steam at 160 °C within 20 hours. The steam condensate was treated using fixed-bed photo-catalysis using 1% Pt-TiO2 photocatalyst supported on silica gel. After 35 minutes of empty bed contact time, more than 95% removal of TCE, cis-DCE, toluene, EB, and xylenes was achieved, and more than 75% removal of PCE was observed.

In the case of activated carbon adsorbent, steam regeneration was not effective, and a significant loss in adsorbent capacity was observed.  相似文献   

10.
Abstract

Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppmv), methyl ethyl ketone (12 ppmv), toluene (29 ppmv), ethylbenzene (10 ppmv), and p-xylene (10 ppmv). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m?3 hr?1 and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

11.
Lee TH  Kim J  Kim MJ  Ryu HW  Cho KS 《Chemosphere》2006,63(2):315-322
With ketone pollution forming an ever-growing problem, it is important to identify a ketone-degrading microorganism and establish its effect. Here, a methyl ethyl ketone (MEK)-degrading bacterium, Pseudomonas sp. KT-3, was isolated and its MEK degradation characteristics were examined in liquid cultures and a polyurethane-packed biofilter. In liquid cultures, strain KT-3 could degrade other ketone solvents, including diethyl ketone (DK), methyl propyl ketone (MPK), methyl isopropyl ketone (MIPK), methyl isobutyl ketone (MIBK), methyl butyl ketone (MBK) and methyl isoamyl ketone (MIAK). The maximum specific growth rate (mumax) of the isolate was 0.136 h(-1) in MEK medium supplemented with MEK as a sole carbon source, and kinetically, the maximum removal rate (Vm) and saturation constant (Km) for MEK were 12.28 mM g(-1)DCW h(-1) (DCW: dry cell weight) and 1.64 mM, respectively. MEK biodegradation by KT-3 was suppressed by the addition of MIBK or acetone, but not by toluene. In the tested biofilter, KT-3 exhibited a>90% removal efficiency for MEK inlet concentrations of around 500 ppmv at a space velocity (SV) of 150 h(-1). The elimination capacity of MEK was more influenced by SV than by the inlet concentration. Kinetic analysis showed that the maximum MEK removal rate (Vm) was 690 g m(-3) h(-1) and the saturation constant (Km) was 490 ppmv. Collectively, these results indicate the polyurethane sequencing batch biofilter with Pseudomonas sp. KT-3 will provide an excellent performance in the removal of gaseous MEK.  相似文献   

12.
Some metal etching operations emit limited flow rates of waste gases with reddish-brown NO2 fume, which may cause visual and acidic-odor complaints, as well as negative health effects. In this study, tests were performed by passing caustic-treated waste gases vented from Al-etching operations through columns packed either with virgin or regenerated granular activated carbon (GAC) to test their adsorptive conversion performance of NO2 in the gases. The gases contained 5–55 ppm NO2 and acetic and nitric acids of below 3 ppm. Exhausted carbon was regenerated by scrubbing it with caustic solution and water, and dried for further adsorption tests. Results indicate that with an (empty bed residence time (EBRT) of 0.15 sec for the gas through the GAC-packed space, around 60% of the influent NO2 of 54 ppm could be removed, and 47% of the removed NO2 was converted by and desorbed from the carbon as NO. GAC used in the present study could be regenerated at least twice to restore its capacity for NO2 adsorption. Within EBRTs of 0.076–0.18 sec, the adsorptive conversion capacity was linearly varied with EBRT. In practice, with an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO2 (kg GAC)?1 with an influent NO2 of 40 ppm can be used as a basis for system design.

Implications: Some metal etching operations emit waste gases with reddish-brown (yellow when diluted) NO2 fume which may cause visual and acidic-odor complaints, as well as negative health effects. This study provides a simple process for the adsorptive conversion of NO2 in caustic-treated waste gases vented from metal-etching operations through a GAC column. With an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO2 (kg GAC)?1 with an influent NO2 of 40 ppm can be used as a basis for system design. Saturated GAC can be regenerated at least twice by simply scrubbing it with aqueous caustic solution.  相似文献   

13.
A polysulfone microporous membrane module was investigated for control of 1-butanol-contaminated gas streams. A diurnal loading condition, using two different butanol concentrations, was used to simulate start-up and stop conditions associated with shift work. The membrane module was also used to remove 1-butanol from air under continuous loading conditions in a bioreactor. The reactors were seeded with a mixed bacterial consortium capable of butanol biodegradation. Biokinetic parameters for butanol utilization were determined for the culture to be a maximum specific utilization rate (k) equal to 4.3 d(-1) and a half saturation constant (Ks) equal to 8.9 mg L(-1). A biofilter running only with diurnal loading conditions giving a "40-hr work-week" had an average 1-butanol removal rate of 29% (111 ppm, 74 gm(-3) hr(-1)) from a 350-ppm influent at the end of an 8-hr operational day. End-of-day removal varied between 4 and 67% during the operational period. With continuous steady-state operation followed by placement on a diurnal loading schedule and influent butanol concentrations increased to 700 ppm, butanol removal averaged 38% (269 ppm, 145 gm-3 hr(-1)). Under continuous loading, steady-state conditions, 1-butanol removal from the airstream was greater than 99% (200 ppm, 73 gm-3 hr(-1)). These results suggest that the bioreactor can be operated on a diurnal schedule or 40-hr week operational schedule without any decline in performance.  相似文献   

14.
考察了微波-活性炭联合处理技术对模拟染料废水中亚甲基蓝和Cd2+的去除效果。对于100 mL浓度为1 000 mg/L的亚甲基蓝溶液、活性炭用量为10 g时,新活性炭对亚甲基蓝的去除率为99.99%;采用700 W微波对吸附亚甲基蓝的活性炭辐射10 min进行再生并回用,经微波辐射再生10次后活性炭对亚甲基蓝的去除率为99.68%,未经微波作用反复使用10次的活性炭对亚甲基蓝的去除率为85.41%。结果表明:微波处理有效地减缓了活性炭吸附能力的下降速率,实现了活性炭再生和反复使用。在吸附过程中,Cd2+使活性炭对亚甲基蓝的吸附能力略有下降,而共存的亚甲基蓝则促进了活性炭对Cd2+的吸附,对新炭和再生后活性炭物理化学特性的表征证明了活性炭对亚甲基蓝的吸附为物理吸附,对Cd2+的吸附为化学吸附。  相似文献   

15.
Modeling variations of medium porosity in rotating drum biofilter   总被引:1,自引:0,他引:1  
Yang C  Chen H  Zeng G  Yu G  Liu X  Zhang X 《Chemosphere》2009,74(2):245-249
Rotating drum biofilters (RDBs) mounted with reticulated polyurethane sponge media has showed high removal efficiencies over a long period of time when used for volatile organic compound (VOC) removal. Due to the accumulation of biomass within the sponge medium, the porosity of a filter bed usually changes dynamically, which makes it difficult to predict and to control. In this paper, the porosity of a multi-layer RDB bed was investigated by a diffusion-reaction model in which biofilm growth and decay were taken into account at the pore scale of the sponge medium. Temporal and spatial changes of porosity were studied under various organic loadings and gas empty bed contact times (EBCTs). The porosity of the biofilter bed was assumed to be a function of biofilm thickness, and all the pores were assumed to be uniform. Toluene was selected as the model VOC. The model was solved using numerical methods through the MATLAB software. Results show that the porosity decreased with increased time of operation, increased toluene loading, or decreased gas EBCT value. The porosity in the outermost medium layer was less than that in the inner medium layers. Toluene removal efficiencies and porosities calculated from this model correlated with the experimental data well. Porosity variation was proposed to be an indicator for prediction of biofilter performance in biofilters as a consequence.  相似文献   

16.
Research was performed to demonstrate the removal of carbon tetrachloride (CT) using compost biofilters operated under methanogenic conditions. Biofilters were operated at an empty-bed residence time of 2.8 minutes using nitrogen as the atmosphere. Hydrogen and carbon dioxide were supplied as an electron donor and carbon source, respectively, during acclimation of the bed medium microbes. Once methanogenesis was demonstrated, CT flow to the biofilter was established. Biofilters were operated over a CT concentration range from 20 to 700 ppbv for 6 months. Bed medium microbes were able to remove up to 75% of the inlet CT. At excessively high CT concentrations (> 500 ppmv), methane production and hydrogen utilization by the bed medium microbes appeared to be inhibited. CT removal by the biofilter decreased when the hydrogen supply was removed from the biofilter inlet, indicating that hydrogen acted as the electron donor for reductive dechlorination. The removal efficiency and relatively low empty bed residence times demonstrated by these laboratory-scale biofilters indicate that anaerobic biofiltration of CT may be a feasible full-scale process.  相似文献   

17.
ABSTRACT

Research was performed to demonstrate the removal of carbon tetrachloride (CT) using compost biofilters operated under methanogenic conditions. Biofilters were operated at an empty-bed residence time of 2.8 minutes using nitrogen as the atmosphere. Hydrogen and carbon dioxide were supplied as an electron donor and carbon source, respectively, during acclimation of the bed medium microbes. Once methanogenesis was demonstrated, CT flow to the biofilter was established. Biofilters were operated over a CT concentration range from 20 to 700 ppbv for 6 months. Bed medium microbes were able to remove up to 75% of the inlet CT. At excessively high CT concentrations (>500 ppmv), methane production and hydrogen utilization by the bed medium microbes appeared to be inhibited. CT removal by the biofilter decreased when the hydrogen supply was removed from the biofilter inlet, indicating that hydrogen acted as the electron donor for reductive dechlorination. The removal efficiency and relatively low empty bed residence times demonstrated by these laboratory-scale biofilters indicate that anaerobic biofiltration of CT may be a feasible full-scale process.  相似文献   

18.
Abstract

A polysulfone microporous membrane module was investigated for control of 1-butanol-contaminated gas streams. A diurnal loading condition, using two different butanol concentrations, was used to simulate startup and stop conditions associated with shift work. The membrane module was also used to remove 1-butanol from air under continuous loading conditions in a bioreactor. The reactors were seeded with a mixed bacterial consortium capable of butanol biodegradation. Biokinetic parameters for butanol utilization were determined for the culture to be a maximum specific utilization rate (k) equal to 4.3 d?1 and a half saturation constant (Ks) equal to 8.9 mg L?1. A biofilter running only with diurnal loading conditions giving a “40-hr workweek” had an average 1-butanol removal rate of 29% (111 ppm, 74 gm?3 hr?1) from a 350-ppm influent at the end of an 8-hr operational day. End-of-day removal varied between 4 and 67% during the operational period. With continuous steady-state operation followed by placement on a diurnal loading schedule and influent butanol concentrations increased to 700 ppm, butanol removal averaged 38% (269 ppm, 145 gm?3 hr?1). Under continuous loading, steady-state conditions, 1-butanol removal from the airstream was greater than 99% (200 ppm, 73 gm?3 hr?1). These results suggest that the bioreactor can be operated on a diurnal schedule or 40-hr week operational schedule without any decline in performance.  相似文献   

19.
Removal of ammonia from contaminated air by trickle bed air biofilters   总被引:6,自引:0,他引:6  
A trickle bed air biofilter (TBAB) was evaluated for the oxidation of NH3 from an airstream. Six-millimeter Celite pellets (R-635) were used for the biological attachment medium. The efficiency of the biofilter in oxidizing NH3 was evaluated using NH3 loading rates as high as 48 mol NH3/m3 hr and empty-bed residence times (EBRTs) as low as 1 min. Excess biomass was controlled through periodic backwashing of the biofilter with water at a rate sufficient to fluidize the medium. The main goal was to demonstrate that high removal efficiencies could be sustained over long periods of operation. Ammonia oxidation efficiencies in excess of 99% were consistently achieved when the pH of the liquid nutrient feed was maintained at 8.5. Quick recovery of the biofilter after backwashing was observed after only 20 min. Evaluation of biofilter performance with depth revealed that NH3 did not persist in the gas phase beyond 0.3 m into the depth of the medium (26% of total medium depth).  相似文献   

20.
生物滴滤-生物过滤组合工艺处理汽车喷漆废气中试研究   总被引:3,自引:1,他引:2  
采用中试规模的生物滴滤-生物过滤组合工艺设备处理某汽车厂喷漆车间废气,研究了组合式反应器对废气的净化效果和2处理单元对污染组分的去除能力及微生物特性.该汽车厂喷漆车间废气中的主要组分为甲苯、二甲苯、乙酸乙酯、乙酸丁酯、丁醇、丙酮和甲基丙基甲酮.组合式反应器对废气中的污染物有较好的处理效果,但不同的污染组分在不同处理单元...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号