首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The emission of Volatile Organic Compounds (VOCs) is attracting increasing concern both from the public and by government agencies. Among the many available control technologies for the treatment of VOC containing waste streams, incineration offers an ultimate disposal strategy rather than a means for collecting or concentrating the offending compounds. This paper describes the major, commercially available thermal and catalytic incinerator systems that are designed to treat dilute, VOC containing gas streams. Qualitative guidelines are presented whereby the technologies can be compared. In addition, an example waste stream is used to illustrate a simplified procedure for calculating the material and energy balances for each of the incinerators. The resulting parameters will be used in a companion paper to estimate the capital and operating costs associated with each design. In this manner, a first estimate can be obtained of the costs of cleaning a waste stream containing low levels of VOCs.  相似文献   

2.
Abstract

The emission of Volatile Organic Compounds (VOCs) is attracting increasing concern both from the public and by government agencies. Among the many available control technologies for the treatment of VOC containing waste streams, incineration offers an ultimate disposal strategy rather than a means for collecting or concentrating the offending compounds. This paper describes the major, commercially available thermal and catalytic incinerator systems that are designed to treat dilute, VOC containing gas streams. Qualitative guidelines are presented whereby the technologies can be compared. In addition, an example waste stream is used to illustrate a simplified procedure for calculating the material and energy balances for each of the incinerators. The resulting parameters will be used in a companion paper to estimate the capital and operating costs associated with each design. In this manner, a first estimate can be obtained of the costs of cleaning a waste stream containing low levels of VOCs.  相似文献   

3.
This paper discusses the potential for using commercially available treatment techniques to remove VOCs from hazardous waste streams and addresses some of the issues associated with making waste treatment a viable VOC emission control technique for hazardous waste management facilities. It discusses the waste streams of concern because of their volatile constituents and describes potentially applicable treatment techniques. The use of models for treatment process design is described. Finally, the paper discusses treatment cost, treatment residuals, and considerations of importance in choosing where in the life cycle of a hazardous waste stream to treat it.  相似文献   

4.
In an earlier paper, major commercially available incinerator technologies designed to treat dilute waste gas streams containing volatile organic compounds (VOCs) were described in a qualitative comparison. In addition, a simplified procedure was outlined through which important sizing parameters could be calculated given certain information about the waste gas. This paper describes the use of these parameters in developing a study (±30percent) cost estimate for the total capital investment and the total annual costs incurred in treating a waste stream of volatile organic compounds (VOCs). An illustrative problem used in the former paper is completed here in order to contrast some of the economic differences between thermal and catalytic incinerator systems.  相似文献   

5.
ABSTRACT

Microwave regeneration of adsorbents facilitates the recovery of volatile organic compounds (VOCs) by decoupling the bed heating from the stripping gas. This makes possible the creation of a highly-concentrated regeneration effluent from which the VOCs can be recovered by condensation at near-ambient temperatures. The economic feasibility of two novel microwave-regenerated adsorption systems was evaluated by systematically comparing the capital and operating costs of the proposed systems with 10 conventional VOC control technologies. The microwave systems were found to have similar capital and operating costs to conventional steam regeneration systems and, therefore, may present an attractive alternative for recovering water-miscible solvents. In general, the cost of the microwave subsystem is a relatively small component of the overall system costs, and the microwave power requirements are within the range of commercially available generators, even for large emission streams.  相似文献   

6.
ABSTRACT

This is the second part of a two-part paper dealing with the preliminary design and costing of polyfunctional waste treatment plants. In this article, we present some criteria for estimating capital investment and annual operating costs of polyfunctional plants for industrial waste treatment. The process and equipment design methods presented in Part I of this article, together with the economic approach proposed here, allow for complete technical/economic analyses. The overall mathematical model appears to be a useful tool in economic feasibility studies. The accuracy of the developed computer mathematical model has been demonstrated, referring to actual cost data from the literature.  相似文献   

7.
The promulgation of odor control rules, increasing public concerns, and U.S. Environmental Protection Agency (EPA) air regulations in nonattainment zones necessitates the remediation of a wide range of volatile organic compounds (VOCs) generated by the rendering industry. Currently, wet scrubbers with oxidizing chemicals are used to treat VOCs; however, little information is available on scrubber efficiency for many of the VOCs generated within the rendering process. Portable gas chromatography/mass spectrometry (GC/MS) units were used to rapidly identify key VOCs on-site in process streams at two poultry byproduct rendering plants. On-site analysis was found to be important, given the significant reduction in peak areas if samples were held for 24 hr before analysis. Major compounds consistently identified in the emissions from the plant included dimethyl disulfide, methanethiol, octane, hexanal, 2-methylbutanal, and 3-methylbutanal. The two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were by far the most consistent, appearing in every sample and typically the largest fraction of the VOC mixture. A chlorinated hydrocarbon, methanesulfonyl chloride, was identified in the outlet of a high-intensity wet scrubber, and several VOCs and chlorinated compounds were identified in the scrubbing solution, but not on a consistent basis. Total VOC concentrations in noncondensable gas streams ranged from 4 to 91 ppmv. At the two plants, the odor-causing compound methanethiol ranged from 25 to 33% and 9.6% of the total VOCs (v/v). In one plant, wet scrubber analysis using chlorine dioxide (ClO2) as the oxidizing agent indicated that close to 100% of the methanethiol was removed from the gas phase, but removal efficiencies ranged from 20 to 80% for the aldehydes and hydrocarbons and from 23 to 64% for total VOCs. In the second plant, conversion efficiencies were much lower in a packed-bed wet scrubber, with a measurable removal of only dimethyl sulfide (20-100%).  相似文献   

8.
The Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act direct the Environmental Protection Agency to determine the available treatment technologies for a number of hazardous waste streams, including halogenated organics. If it is determined that existing technology and capacity is sufficient for the safe management of the designated halogenated organic wastes, these wastes will be prohibited from land disposal, effective July 8,1987. This article summarizes the general characteristics and treatment alternatives for this waste category.  相似文献   

9.
Abstract

The promulgation of odor control rules, increasing public concerns, and U.S. Environmental Protection Agency (EPA) air regulations in nonattainment zones necessitates the remediation of a wide range of volatile organic compounds (VOCs) generated by the rendering industry. Currently, wet scrubbers with oxidizing chemicals are used to treat VOCs; however, little information is available on scrubber efficiency for many of the VOCs generated within the rendering process. Portable gas chromatography/mass spectrometry (GC/MS) units were used to rapidly identify key VOCs on-site in process streams at two poultry byproduct rendering plants. On-site analysis was found to be important, given the significant reduction in peak areas if samples were held for 24 hr before analysis. Major compounds consistently identified in the emissions from the plant included dimethyl disulfide, methanethiol, octane, hexanal, 2-methylbutanal, and 3-methylbutanal. The two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were by far the most consistent, appearing in every sample and typically the largest fraction of the VOC mixture.

A chlorinated hydrocarbon, methanesulfonyl chloride, was identified in the outlet of a high-intensity wet scrubber, and several VOCs and chlorinated compounds were identified in the scrubbing solution, but not on a consistent basis. Total VOC concentrations in noncondensable gas streams ranged from 4 to 91 ppmv. At the two plants, the odor-causing compound methanethiol ranged from 25 to 33% and 9.6% of the total VOCs (v/v). In one plant, wet scrubber analysis using chlorine dioxide (ClO2) as the oxidizing agent indicated that close to 100% of the methanethiol was removed from the gas phase, but removal efficiencies ranged from 20 to 80% for the aldehydes and hydrocarbons and from 23 to 64% for total VOCs. In the second plant, conversion efficiencies were much lower in a packed-bed wet scrubber, with a measurable removal of only dimethyl sulfide (20–100%).  相似文献   

10.
Abstract

Hazardous waste sites and industrial facilities contain area sources of fugitive emissions. Emission rate measurements or estimates are necessary for air pathway assessments for these sources. Emission rate data can be useful for the design of emission control and remediation strategies as well as for predictive modeling for population exposure assessments. This paper describes the use of a direct emission measurement approach – the enclosure approach using an emission isolation flux chamber – to measure emission rates of various volatile organic compounds (VOCs) from contaminated soil and water. A variety of flux chamber equipment designs and operating procedures have been employed by various researchers. This paper contains a review of the design and operational variables that affect the accuracy and precision of the method. Guidance is given as to the optimum flux chamber design and operating conditions for various types of emission sources. Also presented is a generic quality control program that gives the minimum number of duplicate, blank, background, and repeat samples that should be performed.  相似文献   

11.
12.
Improper solid waste management leads to aesthetic and environmental problems. Emission of volatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography–mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under Hazardous Air Pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.

Implications: This paper describes the hazards of VOC emission from open dumpsites, a common practice, in an Indian metro city. The subsequent partitioning of the emitted VOCs in other environmental compartment from air is presented. The global warming potential and the health hazards to the dumpsite workers from the emitted VOCs have also been estimated.  相似文献   

13.
Improper solid waste management leads to aesthetic and environmental problems. Emission ofvolatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography-mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under hazardous air pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.  相似文献   

14.
The foundry industry is a major consumer of waste materials (scrap). Unfortunately, the recycling of these waste materials can result in the generation of hazardous wastes that must be properly managed at a significant cost. This article focuses on two waste streams in the foundry industry; calcium carbide desulfurization slag and melt emission control residuals. The author presents an overview of how foundries have evaluated different waste management options with the ultimate goal of minimizing the generation of hazardous waste.  相似文献   

15.
Hentschel B  Riedel H 《Chemosphere》2001,43(4-7):727-735
Within the scope of fundamental investigations as well as individual research projects (W. Knorr, B. Hentschel, C. Marb. S. Sch?del, M. Swerev, O. Vierle, J.-P. Lay, 1999. Rückst?nde aus der Müllverbrennung-Chancen für eine stoffliche Verwertung von Aschen und Schlacken. Initiativen zum Umweltschutz, 13 ed., Deutsche Bundesstiftung Ulmwelt, Erich Schmidt, Berlin), the Bavarian State Office for Environmental Protection performs emission measurements at thermal waste treatment plants to optimize operation, to accompany and support development of new technologies, and to study the effect of this kind of waste treatment technology on the environment. Based on recent studies (October 1995-July 1999) at six municipal solid waste incinerators (MSWI) in Bavaria all emission streams (solid and gas) are characterized with respect to organic pollutant contents and compared to the emissions of waste pyrolysis. The significant ranges of pollutant concentration as well as the specific congener patterns observed are similar for all MSWI, regardless of differences in technical design and waste input, but differ markedly from those of the pyrolysis products. The overall approach, including the sampling of all output streams and the determination of mass streams and volume flow rates, allows the calculation of the total output of different organic pollutants for waste incineration plants aand to estimate the relative contribution of each of the emission streams to the total pollutant load. Removal efficiencies are also calculated for the air pollution control (APC) systems of the different MSWI plants.  相似文献   

16.
The extractive nature of the petroleum industry sets it apart from other industries in many respects. The nature of this industry places it at somewhat of a disadvantage to other industries when attempts are made to foster waste minimization practices and programs. However, this is no excuse for the industry to not further vigorously pursue minimizing waste. This paper describes the petroleum industry and the products it makes along with their associated waste streams. The industry’s commitment to waste minimization is described with examples of specific minimization projects provided. Although the opportunities for minimization are limited, the economic incentives for reducing waste disposal costs, not to mention long term liability from improper disposal practices, has put the petroleum industry on the road to waste minimization.  相似文献   

17.
Jin Y  Veiga MC  Kennes C 《Chemosphere》2007,68(6):1186-1193
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.  相似文献   

18.
Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Implications: Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.  相似文献   

19.
Two processes are currently being employed in North America for the desulfurization of coke oven gas, the Vacuum Carbonate System, and the Stretford System. A third, the Sulfi-ban Process, which was recently announced, now has several plants scheduled for construction. Overall operating requirements for each of these processes are considered in detail. Emphasis is placed on an identification of power and steam requirements, the types and amounts of solid and/or liquid waste streams produced together with methods for their treatment, and the net desulfurization efficiencies achieved by each process. Detailed estimates of capital and operating costs for desulfurization are considered, and equipment needs for environmental control requirements are discussed.  相似文献   

20.
A more detailed characterization of particulate organic matter in wastewater streams is needed to improve solid-liquid separation and biological processes for wastewater treatment. The objective of this paper was to evaluate particle size distributions and the associated chemical composition for municipal, industrial, and agricultural waste streams. Most of the organic matter in these wastewaters was larger than a molecular weight of 10(3) amu and therefore would require extracellular hydrolysis before any bacterial metabolism. Particle size distributions were significantly different for the studied waste streams. In municipal wastewater, the organic matter was evenly distributed in all eight size fractions ranging from 10(3) amu up to 63 microm. The industrial and agricultural wastewaters, however, contained mainly soluble organic matter (<10(3) amu) and larger particles (>1.2 microm for the industrial and >10 microm for the agricultural waste) leaving a gap in the size range of large macromolecules and colloids. The relative protein and carbohydrate concentrations varied for the different size fractions compared to the measured chemical oxygen demand (COD) in the corresponding size fraction. Thus, the design of the solid-liquid separation at a treatment plant could be used to purposefully modify the overall chemical composition of the organic matter before further biological treatment. Particle size distributions will influence design and operation of biological nutrient removal processes such as denitrification or biological phosphorus removal that may be carbon limited if a large fraction of the organic matter is composed of large particles with slow hydrolysis rates. Measured particle size distributions for the different waste streams in this study (municipal, industrial, agricultural) were significantly different requiring specific approaches for treatment plant design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号