共查询到20条相似文献,搜索用时 11 毫秒
1.
C. Jean Bustard Kenneth M. Cushing Ramsay L. Chang 《Journal of the Air & Waste Management Association (1995)》2013,63(9):1240-1249
Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial boiler applications and in utility and industrial boilers abroad. Their small size and reduced cost relative to more conventional reverse-gas baghouses makes the use of PJFFs appear to be an attractive particulate control option for utility boilers. This paper (Part 2 of a three-part series) summarizes the results of pilot PJFF studies sponsored by the Electric Power Research Institute at different utility sites in the United States. The purpose of these tests is to evaluate PJFF performance for U.S. fossil-fuel-fired applications. These data are also used to corroborate the results of a recent worldwide survey of PJFF user experience, as described in Part 1 of this series. Part 3 will provide a cost comparison of PJFFs to other particulate control options such as electrostatic precipitators and reverse-gas baghouses. 相似文献
2.
Fethiye Ozis Manisha Singh Constantinos Sioutas 《Journal of the Air & Waste Management Association (1995)》2013,63(8):935-940
Abstract The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05–2.5 μm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7–2.5 μm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 μm. The results suggest that development of biological filters for fine particles is possible. 相似文献
3.
Thomas W. Hesterberg Sonja N. Sax Charles A. Lapin Roger O. McClellan William B. Bunn 《Journal of the Air & Waste Management Association (1995)》2013,63(9):894-913
ABSTRACT Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a “probable” human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as “likely to be carcinogenic to humans.” These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988–2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and “traditional diesel exhaust” (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.
IMPLICATIONS Based on the distinct physical and chemical properties of New Technology Diesel Exhaust (NTDE), it has become clear that findings from the health effects studies conducted on traditional DE (TDE) over the last 30 years have little relevance to NTDE, which is more similar to the exhaust from compressed natural gas (CNG) or gasoline engine emissions than to traditional TDE. Once sufficient health effects data are available for NTDE, it will thus be necessary to conduct new hazard and risk assessments for NTDE that are independent of the DE toxicological database acquired on emissions from pre–2007 diesel technology. 相似文献
4.
Nigel N. Clark Ronald P. Jarrett Christopher M. Atkinson 《Journal of the Air & Waste Management Association (1995)》2013,63(9):76-84
ABSTRACT Diesel particulate matter (PM) is a significant contributor to ambient air PM10 and PM2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction. 相似文献
5.
Effect of Fuel Properties on Mutagenic Activity in Extracts of Heavy-duty Diesel Exhaust Particulate
Ronald E. Rasmussen 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1391-1396
The effect of varying fuel properties on the emission of mutagenic materials was studied in diesel exhaust particles from a heavy duty engine run under transient speed and load conditions while using nine fuels varying in aromatics, sulfur and boiling point. Mutagenic activity of the soluble organic fraction (SOF) of the particulate was determined using the Ames Salmonella test system with strain TA98 with and without S9 activation. Increasing mutagenic activity relative to fuel consumed (mutants/lb fuel) or to engine work output (mutants/hp-h) was correlated with increasing fuel aromatics (p < 0.05), but not with fuel sulfur. Increased fuel sulfur levels were correlated with increased amounts of SOF but with decreasing mutagenic activity of the SOF (mutants/microgram SOF) (p < 0.05). As a result, mutants/hp-h were essentially the same for high- and low-sulfur fuels with high aromatics. No association was found between the fuels’ boiling points and the mutagenic activity of the SOF. Mutagenic activity with S9 was generally lower than without, but the correlations were not changed. 相似文献
6.
Zhen-Shu Liu Ming-Yen Wey Chiou-Liang Lin 《Journal of the Air & Waste Management Association (1995)》2013,63(7):983-991
ABSTRACT This study investigated the effects of feedstock additives [polyvinyl chloride (PVC) and NaCl] and spray dryer additives (SiO2, CaCl2, NaHCO3) on heavy metal and fly ash removal efficiencies, and on particle size distribution of heavy metals. A spray dryer with an integrated fabric filter was used as an air pollution control device (APCD). Removal efficiencies for fly ash and heavy metals were greater than 95 and 90%, respectively. When additives of PVC or NaCl were used, the concentration of heavy metals distributed in fly ash apparently varied when the particle diameter was <1 μm. Although the effects of the additives SiO2, CaCl2, and NaHCO3 on the elemental size distribution of Cr were insignificant, these additives did slightly increase concentrations of Cd, Zn, and Pb partitioning in coarser particles (>1μm). 相似文献
7.
Crystal K. Reul-Chen Charles Ross Nancy L.C. Steele Arthur M. Winer 《Journal of the Air & Waste Management Association (1995)》2013,63(2):241-247
Abstract To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994–2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles—roll-offs, and front-end, rear, and side loaders—and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with ~50–90% achieving the required regeneration temperatures. Only 8–25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application. 相似文献
8.
Qin W Dekermenjian M Martin RJ 《Journal of the Air & Waste Management Association (1995)》2006,56(8):1177-1183
Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse. 相似文献
9.
研究了在常压、不需通氧或空气的条件下用硫酸浸取铁闪锌矿制硫酸锌过程中硫化物气体污染物的控制条件。试验结果表明,在硫酸浓度20% ̄40%,浸取温度110℃ ̄130℃,固液比1:5 ̄1:7,以及强烈搅拌的条件下,浸取过程中H2S和SO2排放量最低,浸以2h,锌的一次浸取率在92%以上,闪锌矿中的硫绝大部分转变为单质硫。 相似文献
10.
Raymond M. Robinson 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1026-1027
Effective August 1, 1978 the Government of Canada ordered that all future federal regulations of significant economic import, covering the subjects of health, safety and fairness be preceded by the publication of a formal socioeconomic impact analysis (SEIA). Environmental protection regulations are included. I encountered my first public reaction to this announcement at a conference in Ottawa on the subject of “Jobs and the Environment”. A union official duly observed that the SEIA was obviously industry’s answer to having to carry out Environmental Impact Assessments. Not much later, I was told by a senior environmental official of an overseas country that what SEIA really did was to place the burden of proof on governments as to the need for control, rather than leaving industry to show that their activities were not damaging to the environment. 相似文献
11.
Keith J. Fritsky John H. Kumm Michael Wilken 《Journal of the Air & Waste Management Association (1995)》2013,63(12):1642-1649
ABSTRACT Phoenix Services, Inc., owns and operates the Baltimore Regional Medical Waste Incinerator in Baltimore, MD. New regulations for dioxins and furans imposed a limit that was considerably below historical emission levels. To determine a method to comply with the new dioxin/furan regulations, Phoenix Services performed trials with powdered activated carbon (PAC). Although the results with carbon were acceptable, Phoenix Services decided to replace their woven fiberglass filter bags with catalytic filters that simultaneously destroy dioxins and furans and collect particulate matter (PM). The catalytic filter system offered several advantages to Phoenix Services, including destruction of dioxins and furans instead of adsorption on carbon. The catalytic filters also offered a passive solution that did not require new carbon injection equipment. In January 2000, a campaign to measure dioxins/furans and PM was undertaken. 相似文献
12.
《Journal of the Air & Waste Management Association (1995)》2013,63(2):320-343
Abstract Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5–20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.5 are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods. 相似文献
13.
S. Giordano P. Adamo E. Pittao R. Bargagli 《Environmental pollution (Barking, Essex : 1987)》2009,157(10):2798-2805
To define a harmonized methodology for the use of moss and lichen bags as active monitoring devices of airborne trace elements in urban areas, we evaluated the element accumulation in bags exposed in Naples in different spring weather conditions for 6- and 12-weeks. Three different pre-exposure treatments were applied to moss and lichen materials: water-washing, acid-washing and oven-drying. During the different exposure periods in the Naples urban environment the moss accumulated always higher amounts of elements (except Hg) than lichens and the element accumulation increased during wetter weather and higher PM10 conditions. The oven pre-treatment did not substantially modify the morphology and element composition of moss and the exposure in bags of this material for 6-weeks was sufficient to detect the pattern of airborne trace elements. 相似文献
14.
Kevin L. Chartier Mark A. Weitz 《Journal of the Air & Waste Management Association (1995)》2013,63(12):1199-1203
ABSTRACT Five identical, collocated, low-volume samplers were operated to collect airborne particulate matter less than 2.5 microns (PM25). Five commercially available filter types were installed in the samplers to compare the gravimetric determination of PM2.5 concentrations in the atmosphere. The filters were rotated through the five samplers for two study periods—one in summer and one in winter. The study was performed in Sheridan, WY, in close proximity to a gravimetric laboratory to minimize the introduction of errors associated with sample handling. Rigorous quality assurance procedures were employed throughout the study.Four of the five filter types provided comparable gravimetric determinations of airborne PM2.5. 相似文献
15.
Particulate air pollution from combustion and construction in coastal and urban areas of China 总被引:1,自引:0,他引:1
Chen B Chen J Zhao J Zhang F 《Journal of the Air & Waste Management Association (1995)》2011,61(11):1160-1165
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China. 相似文献
16.
Susanne Hering Glen Cass 《Journal of the Air & Waste Management Association (1995)》2013,63(6):725-733
ABSTRACT Because the Federal Reference Method for PM25 specifies the collection of ambient particles on Teflon filters, we have examined the loss of a known volatile species, particulate nitrate, during sampling. Data are presented from two studies in southern California for which parallel samples were collected by different methods. Differences in collected nitrate are modeled using an evaporation model based on the work of Zhang and McMurry. The average nitrate obtained from sampling with Teflon filters was 28% lower on average than that measured by denuded nylon filters. In contrast, cascade impactor samples were within 5% of the denuded nylon filter on average. A simple model is presented that accounts for the particulate nitrate loss from Teflon filters either by scavenging nitric acid and ammonia in the sampler inlet or by heating the filter substrate during sampling. The observed magnitude of loss is explained by any of the following situations: (1) 100% nitric acid and ammonia vapor loss in the inlet, (2) 5 °C heating of the filter substrate above ambient temperature during sampling, or (3) a combination of these factors, such as 50% vapor loss in the inlet and 3 °C heating of the filter. 相似文献
17.
S. O. Farwell D. R. Gage M. F. Jernegan J. R. Felkey 《Journal of the Air & Waste Management Association (1995)》2013,63(1):71-74
ABSTRACT This paper describes some characteristics of speciated nonmethane organic compound (NMOC) data collected in 1994 at five Photochemical Assessment Monitoring Stations (PAMS) and archived in the U.S. Environmental Protection Agency’s Aerometric Information Retrieval System (AIRS). Topics include data completeness, distribution of individual NMOCs in concentration categories relative to minimum detectable levels, percentage of total NMOC associated with the sum of the 55 PAMS target compounds, and use of scatterplots to diagnose chromatographic misidentification of compounds. This is an early examination of a database that is expanding rapidly, and the insights presented here may be useful to both the producers and future users of the data for establishing consistency and quality control. 相似文献
18.
Prediction of adsorption rate of phosphate removal from wastewater with gas concrete 总被引:1,自引:0,他引:1
《国际环境与污染杂志》2011,19(6):603-614
Gas concrete, a conventional structural material, is used to remove phosphate from wastewater. A batch study of phosphate removal from wastewater with waste particles of gas concrete has been performed. The concentration-time graphs were plotted against pH, temperature, and agitation speed, and the reaction rate equation was adapted to adsorption. The differential method was used to define reaction rate. The adsorption rates, reaction rate constants, and reaction rates were determined by tangent lines of drawn curves at different concentrations, depending on pH, temperature, and agitation speed. The adsorption rate increased with pH and temperature. The maximum effect of agitation speed on the adsorption rate was observed at 150 rpm. The activation energy of reaction and the pre-exponential factor were calculated using the Arrhenius equilibrium equation. The zeta potentials of waste gas concrete were determined at various pH values. The surface area of gas concrete was obtained using BET apparatus as 22 m2/g. The composition of gas concrete was determined by X-ray diffractometry. The results indicate that gas concrete is an effective adsorbent to remove phosphate from wastewater. 相似文献
19.
Judith C. Chow John G. Watson Douglas H. Lowenthal Karen L. Magliano 《Journal of the Air & Waste Management Association (1995)》2013,63(8):1158-1168
Abstract Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations. 相似文献
20.
《Atmospheric environment (Oxford, England : 1994)》2007,41(4):854-866
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools. 相似文献