共查询到19条相似文献,搜索用时 15 毫秒
1.
FISH is a quick, inexpensive, accurate, sensitive and relatively specific method for aneuploidy detection in samples of uncultured chorionic villus cells and amniotic fluid cells. FISH allows detection of the autosomal trisomies 13, 18 and 21 and X and Y abnormalities and any other chromosome abnormality for which a specific probe is available. The detection rate of these abnormalities is high in informative samples which have a concordance of > 99.5% with cytogenetic results. A relatively high number of abnormal cases are found in uninformative samples. However, such samples should be regarded as samples to be investigated further. Clinical experience with the use of FISH for prenatal diagnosis is now beyond 10,000 cases; a number of clinical protocols and smaller trials have also been carried out, resulting in 90% of attempted analyses giving informative results with a high detection rate and extraordinarily low false-positive and false-negative rates Unsolved problems remain, such as occasional technical failures, admixtures of maternal blood and up to 20% uninformative scoring results, especially for abnormal specimens. FISH is at present used as an adjunct to classical cytogenetic analysis. However, this should not be interpreted as meaning that FISH could not be used as a methodology in its own right. If FISH were to be considered a Diagnostic test then this might be the case, due to the risk of false-negative and false-positive results and the fact that FISH does not allow a diagnosis of certain structural abnormalities. If, on the other hand, FISH is considered a screening test, which means that in all abnormal (or indeterminate) cases, classical cytogenetic analysis would follow the abnormal screening test, the accuracy which is potentially higher than for other screening methods, for example in cases of trisomy 21, justifies FISH as a prenatal screening test in its own right. 相似文献
2.
P. Nagesh Rao Ph.D. Rosa Hayworth Kelly Cox Frank Grass Mark J. Pettenati 《黑龙江环境通报》1993,13(4):233-238
Rapid detection of aneuploidy using chromosome-specific repetitive DNA probes and the potential diagnostic accuracy of fluorescence in situ hybridization (FISH) on interphase cells of chorionic villus samples (CVS) are presented. Analyses demonstrated the ability to correctly identify aneuploidy using FISH in uncultured CVS. Our preliminary investigation suggests that this technique offers a significant clinical potential to circumvent problems of culture, time, and cost in cytogenetic analysis. 相似文献
3.
Maya Thangavelu PhD Eugene Pergament Rafael Espinosa Iii Stefan K. Bohlander 《黑龙江环境通报》1994,14(7):583-588
We characterized by microdissection and fluorescence in situ hybridization (FISH) two marker chromosomes: (1) a de novo, acrocentric marker chromosome detected in 88 per cent of the amniotic fluid cells of one of two physically and developmentally normal twins; and (2) a metacentric marker chromosome present in a phenotypically normal female. Analysis of FISH probes developed from the marker chromosomes indicated that the marker chromosomes in cases 1 and 2 were del(14)(q11) and a derivative chromosome from a Robertsonian translocation, respectively. Microdissection in combination with FISH may prove to be a valuable technique in determining the chromosomal origin of de novo marker chromosomes and unbalanced structural rearrangements detected during prenatal diagnosis. 相似文献
4.
V. Cacheux G. Tachdjian L. Druart J. F. Oury S. Sérero P. Blot C. Nessmann 《黑龙江环境通报》1994,14(2):79-86
The major aneuploidies diagnosed prenatally involve the autosomes 13, 18, and 21, and sex chromosomes. Fluorescence in situ hybridization (FISH) allows rapid analysis of chromosome copy number in interphase cells. This prospective study evaluated the use of four commercially available centromeric DNA probes (DXZ1, DYZ1, D18Z1, and D13Z1/D21Z1) for direct analysis of uncultured amniocytes. One hundred and sixteen amniotic fluid samples were analysed by FISH and standard cytogenetics. This evaluation demonstrated that FISH with, X, Y, and 18 alpha satellite DNA probes could accurately and rapidly detect aneuploidies involving these chromosomes and could be used in any prenatal clinical laboratory. In contrast, the 13/21 alpha satellite DNA probe hybridizing both chromosomes 13 and 21 was unreliable for prenatal diagnosis in uncultured amniocytes. 相似文献
5.
6.
A 45,X/46,Xder(Y) mosaicism detected prenatally was shown to have a rare Y inversion- duplication or Y/Y translocation which can only be identified by a combination of high resolution cytogenetics and fluorescence in situ hybridization. The present data indicate the usefulness and importance of chromosome-specific probes in the identification and characterization of chromosome rearrangements. 相似文献
7.
Suzanne L. Reeser Alan E. Donnenfeld Robert C. Miller Beatrice S. Sellinger Beverly S. Emanuel Deborah A. Driscoll M.D. 《黑龙江环境通报》1994,14(11):1029-1034
Cytogenetic studies of cultured amniocytes demonstrated a karyotype of 46, XX/47, XX,+mar. A bisatellited, dicentric, distamycin-DAPI negative, NOR-positive marker was present in 76 per cent of the metaphases examined. Similar markers have been associated with cat eye syndrome (CES). We report on the utilization of fluorescence in situ hybridization (FISH) with a 14/22 a-satellite probe and a chromosome 22-specific cosmid for locus D22S9 to determine the origin of the prenatally detected supernumerary marker chromosome. FISH studies demonstrated that the marker is a derivative of chromosome 22 and enabled us to provide the family with additional prognostic information. 相似文献
8.
Dr. Elisabeth Blennow The-Hung Bui Ulf Kristoffersson Mihailo Vujic Göran Annerén Eva Holmberg Magnus Nordenskjöld 《黑龙江环境通报》1994,14(11):1019-1028
During 7 years (1985–1992), 39 105 consecutive prenatal diagnoses (34 908 amniocenteses and 4197 chorionic villus samples) were made at the five largest clinical genetic laboratories in Sweden. Thirty-one cases of extra structurally abnormal chromosomes (ESACs) were found, giving a total prevalence of 0·8 per 1000. Twelve ESACs were inherited, 14 were de novo and in five the parental origin was unknown. This gives an estimated prevalence of 0·3–0·4 per 1000 for familial and 0·4–0·5 per 1000 for de novo ESACs. Retrospectively, the ESACs were characterized by fluorescence in situ hybridization (FISH). In nine cases, no material was available for this analysis. In 21 of the remaining 22 cases, the chromosomal origin could be identified by FISH. Seventeen of these (81 per cent) were derived from the acrocentric chromosomes, of which 13 originated from chromosome 15 (62 per cent). The most common ESAC was the inv dup(15) (57 per cent). Two cases were derived from chromosome 22, one from chromosome 14, and one from either chromosome 13 or chromosome 21. The four remaining cases consisted to two i(18p)s and two small ring chromosomes derived from chromosomes 4 and 19, respectively. 相似文献
9.
Britta Christensen Ph.D. Thue Bryndorf John Philip Claes Lundsteen Winnie Hansen 《黑龙江环境通报》1992,12(4):241-250
Two biotinylated chromosome-specific DNA probes were used to quantify the number of chromosomes 18 and 1 in uncultured amniocytes. Thirty-three samples of uncultured amniocytes were hybridized with a chromosome 18-specific DNA probe. Uncultured cells from two of the 33 samples were also hybridized with a chromosome 1-specific probe. Thirty of the samples were disomic with respect to chromosome 18; two samples were trisomic with respect to chromosome 18, and one sample was trisomic with respect to chromosomes 1 and 18. The two cases of trisomy 18 and the single case of triploidy were identified on uncultured celis within 48-72 h after amniocentesis. They were found among five samples from pregnant women who had amniocentesis because of an ultrasonographically identified fetal malformation. A trisomic karyotype could be diagnosed with certainty in uncultured amniocytes because the majority of the responding nuclei exhibited three hybridization signals. In normal cells, the majority of nuclei exhibited two signals. In no cases was there discordance between the genotype as predicted by in situ hybridization and that determined by cytogenetic analysis. 相似文献
10.
L. Shivashankar E. Whitney G. Colmorgen T. Young G. Munshi D. Wilmoth K. Byrne G. Reeves Dr. D. S. Borgaonkar S. R. Picciano P. A. Marttn-Deleon 《黑龙江环境通报》1988,8(2):85-91
A case of tetrasomy i(12p) detected prenatally is reported. The patient, a black, 33-year-old G3P2002 at 24 weeks' gestation with an unremarkable family history presented herself for prenatal care. Ultrasound examination showed a fetus with diminished femoral and humeral lengths, and hydramnios. A level II scan confirmed the presence of an omphalocele. Amniocentesis at 31 weeks showed 47,XY, + i(12p) karyotype. An infant with multiple congenital anomalies was delivered at 34 weeks. The infant died after 5 h. Genetic and ultrasonographic examinations in the third trimester were helpful in the investigation of this fetus with multiple congenital anomalies. The careful, complete team counselling afforded by this approach enabled the mother and family to be well adjusted to the strong possibility (and subsequent reality) of an abnormal infant. 相似文献
11.
R. J. A. Penketh J. D. A. Delhanty J. A. van den Berghe E. M. Finklestone A. H. Handyside S. Malcolm R. M. L. Winston 《黑龙江环境通报》1989,9(7):489-499
Sixty spare human embryos at various stages of preimplantation development were prepared for cytogenetic analysis. Fluorescent staining of those with metaphases allowed scoring for the presence of a Y chromosome. In situ hybridization was then performed using a biotinylated Y-specific sequence, and the probe was detected by a standard streptavidinlinked alkaline phosphatase system. This enabled comparison of the chromosomal sex with that obtained after in situ hybridization in 28 embryos, and the sexing result obtained by the two methods was concordant in all cases. A further 21 embryos in which no metaphase chromosomes were obtained were sexed by biotinylated in situ hybridization only. Overall, 66 per cent of male interphase nuclei demonstrated a Y-specific hybridization signal. Results were obtained in under 24 h, which may permit the sexing of an embryo biopsied during cleavage and the transfer of sexed embryos at the blastocyst stage to the mother's uterus in the same cycle as oocytes are collected for in vitro fertilization. 相似文献
12.
Metaphase chromosomes and interphase nuclei from nine amniotic fluid cultures were studied with fluorescence in situ hybridization (FISH). The samples were initially analyzed with routine G-banding and were diagnosed as having true mosaicism (five patients) or pseudomosaicism (four patients). In our study, FISH analysis could provide additional information to distinguish pseudo– from true mosaicism by allowing interphase studies and analysis of an increased number of metaphase spreads. These results suggest a multilinear origin of ‘in situ’ colonies of cells. 相似文献
13.
A cytogenetic survey and follow-up studies were made of 14 cases with supernumerary marker chromosomes, identified among 12 699 prenatal samples, investigated at our institution over a 10-year period from 1980 to 1990. FISH (fluorescence in situ hybridization) techniques were employed to identify the chromosomal origin of the marker chromosomes. Five cases were familial, all derived from acrocentric chromosomes, and all without apparent phenotypic effects in the children. Nine cases represented de novo aberrations. In two cases (one with a marker from chromosome 14 or 22, the other with a ring-like marker derived from chromosome 17), the pregnancies continued and apparently normal babies were delivered at term, but the child with a marker derived from chromosome 17 showed slight psychomotor retardation at 2 years of age. All other pregnancies with de novo markers were terminated. In three cases, significant abnormalities were found at autopsy. One of these had an isochromosome 12p and the phenotype was consistent with Pallister-Killian syndrome. In conclusion, marker chromosome identification, as well as clinical follow-up, is essential for the purpose of improving genetic counselling. 相似文献
14.
To determine the fetal sex on 30 women who were 16–20 weeks pregnant, about 100 000 maternal blood nucleated cells were analysed by means of fluorescence in situ hybridization (FISH) with a Y-chromosome-specific DNA probe. Cells with the hybridization signal were detected in 12 of the 30 women. All the 12 mothers gave birth to a male child. Of the other 18 women who had no Y-positive cells in the peripheral blood, 14 gave birth to a female child and four gave birth to a male child. These false-negative results probably occurred because the number of cells examined was inadequate. The data obtained in this study suggest that fetal sex determination using maternal peripheral blood with FISH is possible and that this diagnostic method will be clinically useful when more cells are analysed. 相似文献
15.
G. H. Schuring-Blom M. Keuzer M. E. Jakobs D. M. van den Brande H. M. Visser J. Wiegant J. M. N. Hoovers N. J. Leschot 《黑龙江环境通报》1993,13(8):671-679
In first-trimester chorionic villus sampling (CVS) for prenatal diagnosis, abnormal chromosomal findings, such as mosaicism, trisomies, or suspect abnormal karyotypes, are found more frequently than at amniocentesis. The fact that these chromosomal abnormalities do not always reflect the fetal karyotype but may be restricted to the placenta is a major problem in diagnosis and counselling. In this paper we present the results of fluorescence in situ hybridization (FISH) studies on interphase nuclei of three term placentae investigated because of false-positive findings at first-trimester CVS. The chorionic villi of the first case showed a mosaic chromosome pattern involving a trisomy 10 cell line and a normal cell line, those of the second case a total trisomy 8 cell line, while in the third case a complete monosomy X was found. Follow-up amniocentesis in each of these three cases revealed a normal karyotype. By using FISH, we were able to confirm the presence of the aberrant cell lines, which were all confined to one part of the placenta. FISH on interphase nuclei allows the investigation of large numbers of cells for the existence of numerical chromosome aberrations in a quick and reliable way. 相似文献
16.
An amniocentesis was performed at 13.3 weeks' gestation for advanced maternal age. A mosaic sex chromosome pattern was found: of 50 cells examined, 34 had a 45,X karyotype. In 14 cells with a modal number of 46, a recognizable Y was substituted by a small non-fluorescent marker. C-banding identified the marker as an isodicentric in 12 cells. In two cells, the non-fluorescent marker appeared to be monocentric and looked like a non-fluorescent del (Yq), but could have been an isodicentric Y with inactivation of one of the centromeres. Two cells with a modal number of 47 showed two copies of the monocentric marker. Fluorescent in situ hybridization with an alpha satellite Y-specific centromeric probe confirmed the Y-chromosome origin of the markers and allowed for more accurate prenatal diagnostic information. 相似文献
17.
Different types of fetal nucleated cells can be found in maternal blood, providing the possibility of non-invasive prenatal diagnosis. For this purpose, we have studied fetal erythroblasts. We discovered that haemoglobin-containing cells treated with 2,3-bisphosphoglycerate (BPG) can be visualized by a peroxidase reaction, which at the same time visualizes an in situ hybridization (ISH) signal, specific for the X, Y or 21 chromosome. In order to prove that the BPG-positive cells were erythroid, an anti-glycophorin A (GPA) antiserum combined with a staphylococcal rosette technique was used. To enrich for erythroblasts, leukocytes were depleted from maternal blood by treatment with anti-CD45 monoclonal antibody and passage over an anti-mouse IgG-coated glass bead column. To evaluate the potential of the method for clinical use, we studied maternal blood samples from 18 women referred to us for prenatal diagnosis between 6 and 19 weeks of gestation. Erythroblasts were found in 13 out of 14 normal pregnancies. Erythroblasts with a Y-signal were found as early as 9 weeks of gestation, but at 6 weeks the Y-signal was seen in BPG-negative cells only. These cells showed an epithelioid morphology indicating that they were cytotrophoblasts. The BPG-ISH method provides a simple technique for identifying erythroblasts and simultaneously visualizing a desired probe. 相似文献
18.
19.
Prenatal diagnosis in a kindred with the Opitz (BBB) syndrome is presented. The inheritance is consistent with either autosomal dominant inheritance with sex limited expression or X-linked inheritance. The abnormalities in the kindred consist of hypertelorism, hypospadias, ambiguous genitalia, urocolic fistula, imperforate anus, mental retardation, diaphragmatic hernia, and malrotation with volvulus. A male fetus at 19 weeks was found by ultrasound to have hypertelorism and hypospadias with a small phallus consistent with the syndrome. The diagnosis was confirmed by pathologic examination after pregnancy termination. This is the first report of prenatal diagnosis of Opitz syndrome by ultrasonographic demonstration of hypertelorism and hypospadias in the second trimester. 相似文献