首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
Tuberous sclerosis (TSC) is a frequent autosomal-dominant condition (affecting 1 in 6000 individuals) caused by various mutations in either the hamartin (TSC1) or the tuberin gene (TSC2). This allelic and non-allelic heterogeneity makes genetic counseling and prenatal diagnosis difficult, especially as a significant proportion of TSC cases are due to de novo mutations. For this reason the identification of the disease causing mutation is mandatory for accurate counseling, yet current mutation detection methods such as single-strand conformation polymorphism (SSCP) or denaturing gradient gel electrophoresis (DGGE) are labor intensive with limited detection efficiency. Denaturing high-performance liquid chromatography (DHPLC) is a high-throughput, semi-automated mutation detection system with a reported mutation detection rate close to 100% for PCR fragments of up to 800 bp. We used a recently described DHPLC assay allowing the efficient detection of mutations in TSC1 to analyze the DNA extracted from a chorion villus sample in order to perform a prenatal diagnosis for TSC. The fetus was found not to have inherited the deleterious mutation and the DHPLC diagnosis was confirmed by haplotype analysis. This represents the first DHPLC-based prenatal diagnosis of a genetic disease. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by various mutations in the dystrophin gene. Rapid prenatal diagnosis of DMD with gene duplications is difficult due to limitation in gene dosage determination and the requirement for a known disease-causing mutation in the pedigree to achieve a rapid and accurate diagnosis. We report, here, a case with rapid prenatal diagnosis of DMD-affected male with gene duplications in the absence of a known disease-causing variation in the pedigree by using ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) coupled with competitive multiplex polymerase chain reaction (PCR) protocol. In cases with clinical diagnosis of DMD/BMD, this test should identify greater than 92% of disease-causing DNA variants. The postnatal genetic diagnosis of this case and the same disease-causing mutations subsequently identified in other members of the pedigree confirmed the accuracy of competitive multiplex PCR/IP-RP-HPLC assay in direct prenatal diagnosis of DMD. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Preimplantation genetic diagnosis (PGD) was developed more than a decade ago to offer an alternative to prenatal diagnosis for couples at risk of transmitting an inherited disease to their offspring. Portuguese-type familial amyloidotic polyneuropathy (FAP type I), is an autosomal dominant disease presenting an inherited mutation in the gene encoding the plasma protein transthyretin (TTR). We here report the first protocol for single-cell detection of the Met30 mutation in FAP type I and its application to PGD. A nested PCR reaction for exon 2 of the TTR gene was developed. The PCR product was then analysed by restriction enzyme analysis and SSCP allowing the detection of the point mutation. Ten clinical cycles were performed in seven couples. From the 93 metaphase II (MII) injected oocytes, 82 were normally fertilized and 78 were biopsied. A positive signal in the nested PCR reaction was obtained in 61 blastomeres, corresponding to a DNA amplification efficiency of 78.2%. No allele dropout (ADO) or contamination were detected. A biochemical pregnancy was obtained in three cases and a clinical pregnancy in one couple is actually in normal evolution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Fragile X syndrome is the most common cause of familial mental retardation. The most common mutation is expansion of a triplet (CGG)n repeat in the 5′ untranslated region of the FMR1 gene on Xq27.3. The expansion is refractory to PCR due to preferential amplification of the smaller allele in heterozygous cells and the high GC content of the repeat and surrounding sequences. Direct detection of the normal parental alleles in preimplantation embryos has been used for preimplantation genetic diagnosis (PGD) of this disorder. However, this approach is only suitable for approximately 63% of couples due to the heterozygosity of the repeat in the normal population. As an alternative we investigated the use of polymorphic markers flanking the mutation to track the normal and premutation carrying maternal chromosomes in preimplantation embryos. Using a panel of 11 polymorphisms, six (CA)n repeats and five single nucleotide polymorphisms, diagnosis was developed for 90% of referred couples. Multiplex amplification of informative markers was tested in 300 single buccal cells from interested couples with efficiency and allele drop out (ADO) rates ranging from 69% to 96% and 6% to 18%, respectively. Use of this approach is accurate and applicable to a larger number of patients at risk of transmitting fragile X to their offspring. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Spinal muscular atrophy (SMA) preimplantation genetic diagnosis (PGD) has been available since 1998. Protocols are based on the detection of the homozygous deletion of exon 7, which are present in 90–98% of SMA patients. A couple where the woman was a heterozygous carrier of the usual SMN1 Del7 mutation and the man was a heterozygous carrier of pMet263Arg substitution in exon 6 of SMN1 gene was referred for PGD. The usual PGD test being unsuitable for this couple, we developed a novel duplex polymerase chain reaction (PCR)-based PGD test for the detection of the mutation pMet263Arg by allele specific amplification, combined with the amplification of D5S641 extragenic polymorphic marker. PCR conditions were established using single control lymphoblasts and lymphocytes from the pMet263Arg substitution carrier. Amplification was obtained in 100% of the 86 single cells tested, amplification refractory mutation system (ARMS) PCR was specific in 100% of single cells tested and a complete genotype (mutation plus D5S641) was achieved in 88% of them. A PGD cycle was performed successfully and a pregnancy was obtained. An unaffected girl was born and postnatal diagnosis confirmed PGD results. This is the first PGD described for SMA because of another mutation than the major homozygous exon 7 deletion of SMN1. In the future, a similar strategy could be adopted for other subtle mutations of this gene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Mitochondrial acetoacetyl-coenzyme A (CoA) thiolase deficiency is an organic aciduria which affects isoleucine and ketone body catabolism. GK16 (the index patient) was affected with this disorder and previous studies had revealed that GK16 was a compound heterozygote with IVS8(+1) gt to tt and A301P mutations. In a subsequent pregnancy, prenatal diagnosis was performed and the fetus's amniocytes were analysed by the polymerase chain reaction (PCR) followed by the heteroduplex detection method on a Mutation Detection Enhancement gel. The fetus was identified as a carrier of the IVS8(+1) mutation. We confirmed the diagnosis by immunoblot analysis of extracted amniocytes and gene analysis with blood filter paper after delivery. This is the first report of prenatal diagnosis of this disorder at the gene level.  相似文献   

7.
We report our experience of 14 preimplantation genetic diagnosis (PGD) cycles in eight couples carrying five different single gene disorders, during the last 18 months. Diagnoses were performed for myotonic dystrophy (DM), cystic fibrosis (CF) [ΔF508 and exon 4 (621+1 G>T)], fragile X and CF simultaneously, and two disorders for which PGD had not been previously attempted, namely neurofibromatosis type 2 (NF2) and Crouzon syndrome. Diagnoses for single gene disorders were carried out on ideally two blastomeres biopsied from Day 3 embryos. A highly polymorphic marker was included in each diagnosis to control against contamination. For the dominant disorders, where possible, linked polymorphisms provided an additional means of determining the genotype of the embryo hence reducing the risk of misdiagnosis due to allele dropout (ADO). Multiplex fluorescent polymerase chain reaction (F-PCR) was used in all cases, followed by fragment analysis and/or single-stranded conformation polymorphism (SSCP) for genotyping. Embryo transfer was performed in 13 cycles resulting in one biochemical pregnancy for CF, three normal deliveries (a twin and a singleton) and one early miscarriage for DM and a singleton for Crouzon syndrome. In each case the untransferred embryos were used to confirm the diagnoses performed on the biopsied cells. The results were concordant in all cases. The inclusion of a polymorphic marker allowed the detection of extraneous DNA contamination in two cells from one case. Knowing the genotype of the contaminating DNA allowed its origin to be traced. All five pregnancies were obtained from embryos in which two blastomeres were biopsied for the diagnosis. Our data demonstrate the successful strategy of using multiplex PCR to simultaneously amplify the mutation site and a polymorphic locus, fluorescent PCR technology to achieve greater sensitivity, and two-cell biopsy to increase the efficiency and success of diagnoses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
We report on the prenatal diagnosis of a fetus at risk of leprechaunism. We had previously determined the nature of the causative mutation in the insulin receptor gene in this family. The mutation removes a restriction site for the enzyme Mbo II. Genomic DNA was extracted from a chorionic villus sample and the 3′ half of exon 2 was amplified by the polymerase chain reaction (PCR) followed by restriction digest. Using this method, we correctly predicted an unaffected child.  相似文献   

9.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an important cause of hereditary stroke. Mutations in the Notch3 gene are clearly causally linked to this progressive vascular disorder. Cerebral ischemic attacks, cognitive decline, strokes, and vascular dementia constitute the major manifestations of this disorder. This report details the prenatal detection of a Notch3 mutation in the fetus of a couple where the father had a known mutation in this gene. This is the first report of a prenatal diagnosis of CADASIL, and another example of a serious, highly penetrant, and relentlessly progressive degenerative genetic disorder presenting decades after birth and for which prenatal diagnosis is an option. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A CGA→TGA mutation at codon 111 in exon 3 of the phenylalanine hydroxylase (PAH) gene was recently identified in a Chinese phenylketonuria (PKU) patient. This paper reports the prenatal diagnosis of a Chinese fetus at risk for PKU using DNA amplification with PCR and oligonucleotide hybridization. RFLP analysis revealed that the fetus had inherited a PKU gene from his mother, but his paternal PAH gene was uninformative. PCR amplification of 300 bp which included exon 3 plus the flanking intronic sequences of the PAH gene was performed. The amplified DNA was hybridized with a pair of allele-specific oligonucleotide probes. The results indicated that the fetal DNA carried a PAH 111 Arg→Ter mutant gene inherited from his father. Thus, the fetus was predicted to be affected with PKU.  相似文献   

11.
We report the results of carrier and prenatal diagnosis for hypoxanthine guanine phosphoribosyltransferase (HPRT) deficiency, Lesch—Nyhan syndrome, by carrier testing of 83 women and prenatal analysis of 26 pregnancies. Our diagnostic methodologies include mutation detection and linkage analysis for probands and their families and biochemical measurement of HPRT enzyme activity for at-risk pregnancies. Identification of the mutation in the index case of each family permits precise carrier diagnosis using polymerase chain reaction (PCR) amplification of HPRT gene sequences and automated DNA sequencing. We demonstrate 100 per cent sensitivity for the detection of mutations in the HPRT gene of affected males and highly efficient carrier testing of at-risk females. Two other molecular methods proven to have high utility include PCR-based dosage analysis and linkage analysis by PCR amplification of a short tandem repeat (STR) in intron 3 of the HPRT gene. As a result, 45 at-risk women, 56 per cent of those tested, were identified not to be carriers of their family's HPRT gene mutation. Seven of these women were the mothers of affected males and prenatal testing for future pregnancies was recommended because of the possibility of gonadal mosaicism. Thirty-eight of these women were more distant relatives of affected males, thereby eliminating the need for future prenatal procedures. These studies illustrate the utility and precision of molecular methodologies for carrier and prenatal diagnosis of Lesch—Nyhan syndrome. These studies also illustrate that molecular diagnostic studies of affected males and carrier testing prior to pregnancy can clarify genetic risk predictions and eliminate unnecessary prenatal procedures.  相似文献   

12.
Pyruvate dehydrogenase (PDH) E1α subunit deficiency is an X-linked inborn error of metabolism affecting males and females with equal frequency. The diagnosis is usually based on determination of enzyme activity, although this may present difficulties in some females because of X-inactivation patterns favouring expression of the normal X chromosome. This is a particular problem for prenatal diagnosis using chorionic villus cells where normal enzyme assay results do not necessarily exclude the diagnosis and confirmatory X-inactivation analysis may be complicated by variable methylation of active and inactive X chromosomes. We describe prenatal diagnosis in two pregnancies in a family following diagnosis of a PDH E1α deficient male. The first prenatal diagnosis was performed by enzyme assay, but by the time of the subsequent pregnancy, the underlying mutation in the affected male had been identified and direct gene analysis was possible. This study highlights the limitations of diagnosis of PDH E1α deficiency based on measurement of the gene product and illustrates the need for mutation analysis in affected individuals.  相似文献   

13.
Research towards preimplantation diagnosis of genetic disease was initiated in the UK. in the mid 1980s with the aim of helping those couples who would prefer selection to occur at this stage rather than during pregnancy. Following in vitro fertilisation, (IVF), biopsy and removal of 1 or 2 of the totipotent cells from the cleavage stage 3 day old embryo provides the material for molecular genetic diagnosis without interfering with development. Earliest applications were in the avoidance of X-linked disease by sexing embryos and selecting females for transfer to the mother. Initially, polymerase chain reaction (PCR) amplification of DNA from the biopsied blastomeres was performed using primers specific for sequences derived from the Y chromosome and this led to the birth of several normal girls. To reduce the risk of misdiagnosis due to amplification failure, PCR based methods for sexing the embryo now employ both X and Y specific sequences, but the preferred method is currently considered to be fluorescent in situ hybridisation (FISH) with fluorochrome labelled DNA probes to the embryonic nuclei that have been fixed and spread on slides. Dual FISH with probes from X and Y chromosomes allows unequivocal diagnosis of sex and determination of chromosome copy number, avoiding transfer of embryos with abnormal numbers of sex chromosomes, including those with only the maternal X that would be at 50% risk for the X-linked disease. The application of FISH for preimplantation diagnosis has also led to the realisation that chromosomal mosaicism is common at the cleavage stage of development, a finding that has important implications for diagnosis of both dominant single gene disorders and trisomies, as well as for our understanding of early human development. Cloning and sequencing of the relevant genes has enabled the development of methods for the diagnosis of certain recessive single gene disorders in cleavage stage embryos. PCR based methods have to be developed for each condition, sometimes for each family if there is heterogeneity. Preimplantation diagnosis has been successful so far for cystic fibrosis, Tay Sachs disease, and Lesch-Nyhan syndrome. Worldwide, 32 pregnancies have been established following all types of preimplantation diagnosis and with 29 babies born, there is no evidence for any adverse effect on development.  相似文献   

14.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal inherited disease with a carrier frequency of approximately 1:100 in most Caucasian populations. The disease is implicated in sudden unexpected death in childhood. A prevalent disease-causing point mutation (A985G) in the MCAD gene has been characterized, thus rendering diagnosis easy in the majority of cases. Since the clinical spectrum of MCAD deficiency ranges from death in the first days of life to an asymptomatic life, there are probably other genetic factors—in addition to MCAD mutations—involved in the expression of the disease. Thus, families who have experienced the death of a child from MCAD deficiency might have an increased risk of a seriously affected subsequent child. In such a family we have therefore performed a prenatal diagnosis on a chorionic villus sample by a highly specific and sensitive polymerase chain reaction (PCR) assay for the G985 mutation. The analysis was positive and resulted in abortion. We verified the diagnosis by direct analysis on blood spots and other tissue material from the aborted fetus and from family members.  相似文献   

15.
Isolated sulfite oxidase deficiency is an autosomal recessive, neurological disorder resulting from a defect in SUOX, the gene encoding the enzyme that catalyzes the terminal reaction in the sulfur amino acid degradation pathway. In its classical, severe form, sulfite oxidase deficiency leads to intractable seizures, severe and progressive brain pathology and death at an early age. We report here on clinical features and mutational analysis of the genetic defect in a newborn with sulfite oxidase deficiency. Cultured fibroblasts from this patient exhibited no detectable sulfite oxidase activity, and a unique four base pair deletion was present in the cDNA isolated from the same source. Identification of the same genetic defect in a heterozygous state in each of the parents and the monitoring of subsequent pregnancies in this family by DNA-based prenatal diagnosis are also described. The deletion mutation was identified in a homozygous state in uncultured chorionic villus tissue from the second pregnancy that was subsequently terminated. In the third pregnancy, the presence of sulfite oxidase activity and identification of the mutation in a heterozygous state suggested that the fetus was not affected. This pregnancy resulted in the birth of a normal child. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Mutations of the ataxia-telangiectasia-mutated (ATM) gene are responsible for the autosomal recessive disorder ataxia-telangiectasia (A-T). This study reports the first A-T prenatal diagnosis performed in Spain by direct molecular analysis. The pregnant woman had a previous child suffering from A-T due to a deletion in the ATM gene. The ATM coding region was sequenced in the A-T patient and her parents. Then, a specific polymerase chain reaction (PCR) to detect the deletion was performed for prenatal diagnosis. Additionally, polymorphic HLA loci were examined in order to exclude the possible contamination by maternal DNA. In this family of Gypsy origin, we carried out a rapid molecular diagnosis of A-T. Then, a prenatal diagnosis was carried out, identifying the deletion in the fetal DNA. Additionally, we performed a population study in unrelated Spanish Gypsies and in unrelated controls, showing that the deletion described could be a hotspot in the Spanish Gypsy population. The size of the coding region and the genomic structure, together with the absence of hotspots, make the mutation screening of the ATM gene difficult. The ability to identify ATM mutations provides a tool that can be applied in confirmatory diagnosis, genetic counselling, carrier prediction and prenatal diagnosis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Molecular diagnostic tests are becoming a routine analysis in many laboratories. These modern analyses are widely used in clinical medicine, forensic, genetic and prenatal diagnosis and also in preimplantation genetic diagnosis. The accuracy of analysis is highly dependent on the success achieved in minimising genotyping errors. The pitfalls in molecular diagnostic tests can be due to a simple technique such as the polymerase chain reaction (PCR) used universally. This technique is routinely used for its apparent accuracy, but it is also a well-known source of errors. We report an error introduced during PCR reaction that leads to a wrong sequence result and consequently to a ‘false’ molecular result in a next prenatal diagnosis in a family with severe factor VII (FVII) deficiency. This error was verified using an unsuitable primer design in a rich repetitive sequence of the FVII gene that leads to a false annealing and then to a wrong molecular diagnosis. It is essential to link closely molecular data with clinical and phenotype analysis in order to avoid false-negative or false-positive results, which is of great importance to diagnosis and molecular prevention. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Fragile X syndrome is the most common form of inherited mental retardation, due to an expansion of the (CGG)n trinucleotide repeat in the FMR-1 gene and hypermethylation of its 5′ upstream CpG island. Two major problems remain to be resolved for fragile X prenatal diagnosis: the abnormal methylation patterns of chorionic villus samples (CVS) and the inability to predict the mental status of females with the full mutation. We present here the results of ten prenatal diagnoses of fragile X syndrome using Southern blotting and polymerase chain reaction (PCR) amplification, and the analysis of 50 further CVS to test the methylation status of the CpG island of the FMR-1 gene. In the ten ‘at-risk’ CVS, eight normal (five males and three females) and two affected male fetuses were detected. Absence of methylation in the CVS was observed in two cases, which was not found upon subsequent examination of the newborn or of fetal tissues. In the 50 CVS not ‘at risk’ for fragile X syndrome, abnormal fragment patterns for probe StB12.3 were detected in 32 per cent for female and 24 per cent for male fetuses. This abnormal pattern could be due to absent or partial methylation of the CpG island of the FMR-1 gene in chorionic villus tissues.  相似文献   

19.
Direct detection of the fragile X mutation by DNA analysis has greatly simplified prenatal diagnosis of this disease. However, women carrying a fragile X premutation may pass their expanded trinucleotide repeat to sons without expansion to a full mutation. Such sons are predicted to be intellectually normal. In this situation, the accuracy with which the fetal status can be inferred from analysis of chorionic villus sample (CVS) DNA is unclear. We describe such a case, in which it was felt necessary to proceed to fetal blood sampling despite technically unambiguous DNA results from the CVS. The lack of prospective data means that this dilemma may be expected to recur over the next few years when performing prenatal diagnosis on fragile X premutation carriers.  相似文献   

20.
Discrimination of the M, Z, and S alleles of α1-antritrypsin (AAT) has been carried out using in vitro gene amplification with the polymerase chain reaction (PCR). Amplification of 90 nucleotides surrounding the Z mutation site and 120 nucleotides surrounding the S mutation site dramatically improves the sensitivity and reliability of allele-specific oligonucleotide (ASO) hybridization for direct detection of these alleles. Analysis is performed using Southern blots or dot blots hybridized with 19 base oligonucleotides and differentially washed for allele specificity. Amplification of the Z and S mutation sites can be combined in one PCR to allow detection of both mutations when analysed by gel electrophoresis and Southern transfer. This technique can be performed reliably using less than 0·1 μg of genomic DNA or less than 100 amniocytes or white blood cells. This technique has been used to perform prenatal diagnosis on a chorionic villus sample (CVS) in a fetus at risk for the ZZ Pi type form of AAT deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号