首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During 7 years (1985–1992), 39 105 consecutive prenatal diagnoses (34 908 amniocenteses and 4197 chorionic villus samples) were made at the five largest clinical genetic laboratories in Sweden. Thirty-one cases of extra structurally abnormal chromosomes (ESACs) were found, giving a total prevalence of 0·8 per 1000. Twelve ESACs were inherited, 14 were de novo and in five the parental origin was unknown. This gives an estimated prevalence of 0·3–0·4 per 1000 for familial and 0·4–0·5 per 1000 for de novo ESACs. Retrospectively, the ESACs were characterized by fluorescence in situ hybridization (FISH). In nine cases, no material was available for this analysis. In 21 of the remaining 22 cases, the chromosomal origin could be identified by FISH. Seventeen of these (81 per cent) were derived from the acrocentric chromosomes, of which 13 originated from chromosome 15 (62 per cent). The most common ESAC was the inv dup(15) (57 per cent). Two cases were derived from chromosome 22, one from chromosome 14, and one from either chromosome 13 or chromosome 21. The four remaining cases consisted to two i(18p)s and two small ring chromosomes derived from chromosomes 4 and 19, respectively.  相似文献   

2.
Rapid karyotyping in the second and third trimesters has important implications for the management of pregnancies at risk. From September 1985 to March 1992, 735 amniotic fluid samples sent to our laboratory for rapid karyotyping from 64 different diagnostic centres of the Federal Republic of Germany were included in a comparative study on harvesting for chromosome analysis using the ‘pipette method’ or the ‘in situ’ technique. The average time between preparation of the amniotic fluid and verbal notification of the analysed karyotype was 5·41 days. The ‘pipette method’ needed on average 4·65 days, and the ‘in situ’ technique 5·97 days. In comparison with other more invasive techniques available for rapid karyotyping such as cordocentesis and placental biopsy, amniocentesis and subsequent chromosome harvesting using the ‘pipette method’ and/or the ‘in situ’ technique proved very useful and efficient. The overall incidence of chromosome aberrations was 15·3 per cent. The high rate of structural chromosome aberrations and uncommon aneuploidies found in our investigation (12 per cent) indicates that for rapid karyotyping in the second and third trimesters, conventional cytogenetic techniques cannot be replaced by faster techniques based on fluorescent in situ hybridization on interphase cells in the near future.  相似文献   

3.
We characterized by microdissection and fluorescence in situ hybridization (FISH) two marker chromosomes: (1) a de novo, acrocentric marker chromosome detected in 88 per cent of the amniotic fluid cells of one of two physically and developmentally normal twins; and (2) a metacentric marker chromosome present in a phenotypically normal female. Analysis of FISH probes developed from the marker chromosomes indicated that the marker chromosomes in cases 1 and 2 were del(14)(q11) and a derivative chromosome from a Robertsonian translocation, respectively. Microdissection in combination with FISH may prove to be a valuable technique in determining the chromosomal origin of de novo marker chromosomes and unbalanced structural rearrangements detected during prenatal diagnosis.  相似文献   

4.
This paper represents the analysis of 1916 routine amniotic fluid specimens harvested by an in situ fixation technique in a prospective study with regard to cultural chromosome anomalies. Excluding constitutional abnormalities, 2·9 per cent of 19432 cells analysed showed some form of chromosome anomaly, terminal deletions (57 percent) and chromatid/chromosome breaks and gaps (18 per cent) being the most frequent, followed by interchange aberrations (13 per cent) and trisomy (5 per cent). No case was found of more than one colony from the same culture showing the same anomaly without it being present in other cultures from the same fluid. The wholly abnormal colonies had a surplus of trisomies and from the mathematical considerations presented one may infer that these are likely to reflect the presence of abnormal cells in the amniotic fluid. Partly abnormal colonies appeared at a frequency that would correspond to virtual absence of selection against chromosomally abnormal cells when cultured in vitro. The aberrations found were similar to those seen as single cell anomalies, except for chromatid breaks and exchanges. The data suggest a basic preferential induction of trisomy for chromosomes 2,18,21, and the Y-chromosome. Structural aberrations showed a marked clustering of breakpoints around the centromeres. The frequency of mutant cells was low (1·4 × 10−3) before culture was initiated. At harvest, the frequency of abnormal cells was much higher (3 × 10−2) corresponding to 3 × 10−3 mutations per cell per generation accumulating over approximately ten generations in vitro.  相似文献   

5.
Two rare de novo structural aberrations of the Y chromosome were detected during routine prenatal diagnosis: a satellited non-fluorescent Y chromosome (Yqs), the first de novo Yqs to be reported in a fetus, and a terminal deletion of the Y chromosome long arm del(Y)(q11). In both cases detailed cytogenetic and molecular analyses were undertaken. In the case of the Yqs it was demonstrated by fluorescence in situ hybridization (FISH) that the satellites were derived from chromosome 15. In the case of the del(Yq), it was shown with molecular analysis by polymerase chain reaction (PCR) amplification of sequence-tagged sites (STS-PCR) that the deleted portion of the long arm of chromosome Y included the azoospermia factor loci, AZFb and AZFc. The clinical significance of these findings is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
We describe a female fetus with a de novo X chromosome rearrangement detected prenatally in both chorion villi and a pleural effusion. Chromosome painting showed the chromosome to be composed entirely of X chromosome material, while G-banding indicated a duplication of X short arms, four copies of the proximal long arm, and deletion of the distal long arm of the X. C-banding showed the presence of one active and two inactive centromeres and X-inactivation studies demonstrated the tricentric chromosome to be late replicating in all cells examined. The origin of this complex de novo rearrangement appears to have involved two separate breakage events, the first leading to the production of a dicentric X chromosome and the second generating the tricentric X.  相似文献   

7.
The short-stature homeobox-containing gene (SHOX) on chromosome Xp22.3 was recently identified as an important determinant of the stature phenotype. Deletions of the SHOX gene, some of them due to structural chromosome abnormalities, have been described in patients with idiopathic short stature and Leri-Weill syndrome. Additionally, haploinsufficiency of SHOX is a main cause for short stature seen in patients with Turner syndrome. Here we report an unusual X-chromosome abnormality, which was detected during a fetal karyotyping performed because of a previous child with Down syndrome. GTG banding demonstrated an extra chromosome segment on the terminal part of the short arm of chromosome X in the index case (karyotype: 46,X,Xp+). The same chromosomal abnormality was found in the mother and the maternal grandmother. All carriers of this chromosomal abnormality presented with short stature but no other associated symptoms. Whole chromosome painting of X revealed a homogeneous painting of the abnormal X chromosome indicating that no other chromosome was involved. Additional FISH studies with probe DXS1140 (Kallmann probe at Xp22.3), Quint-Essential X-Specific DNA (DMD probe at Xp21.2), XIST (at Xq13.2), and Tel Xq/Yq were performed, and no abnormality was observed in the intensities or the localizations of the probes signals. However, applying a specific SHOX gene probe (derived from cosmid LLNONO3M34F5) showed a loss of signal on the derivative X chromosome. Our results show that the Xp+ generation led to a deletion of the complete SHOX gene and caused short stature in the presented family. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The maize orange leafhopper Cicadulina bipunctata is distributed widely in tropical and subtropical regions of the Old World and feeds on various Poaceae. The leafhopper is recognized as an important pest of maize in several countries. Adults as well as nymphs of C. bipunctata induce growth stunting and galls characterized by the severe swelling of leaf veins on many cereal crops including wheat, rice, and maize, but do not on barley. To clarify the mechanism of growth stunting and gall induction by C. bipunctata, we used six barley chromosome disomic addition lines of wheat (2H–7H) and investigated the effect of barley (cv. Betzes) chromosome addition on the susceptibility of wheat (cv. Chinese Spring) to feeding by the leafhopper. Feeding by C. bipunctata significantly stunted the growth in 2H, 3H, 4H, and 5H, but did not in 6H and 7H. The degree of gall induction was significantly weaker and severer in 3H and 5H than in Chinese Spring, respectively. These results suggest that barley genes resistant to growth stunting and gall induction exist in 6H and 7H, and 3H, respectively. 5H is considered to be useful for future assays investigating the mechanism of gall induction by this leafhopper because of the high susceptibility to the feeding by C. bipunctata. Significant correlation between the degrees of growth stunting and gall induction was not detected in the six chromosome addition lines and Chinese spring. This implies that these two symptoms are independent phenomena although both are initiated by the feeding of C. bipunctata.  相似文献   

9.
We report the prenatal diagnosis of an extra der(4) resulting from 4:2 malsegregation of a maternal balanced complex translocation involving chromosomes 4, 10, and 11. The woman was referred for amniocentesis because of recurrent miscarriages. Fluorescence in situ hybridization was performed in order to characterize the complex chromosome rearrangement. Following genetic counselling, the couple decided to terminate the pregnancy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Cytogenetic studies of cultured amniocytes demonstrated a karyotype of 46, XX/47, XX,+mar. A bisatellited, dicentric, distamycin-DAPI negative, NOR-positive marker was present in 76 per cent of the metaphases examined. Similar markers have been associated with cat eye syndrome (CES). We report on the utilization of fluorescence in situ hybridization (FISH) with a 14/22 a-satellite probe and a chromosome 22-specific cosmid for locus D22S9 to determine the origin of the prenatally detected supernumerary marker chromosome. FISH studies demonstrated that the marker is a derivative of chromosome 22 and enabled us to provide the family with additional prognostic information.  相似文献   

11.
A cytogenetic survey and follow-up studies were made of 14 cases with supernumerary marker chromosomes, identified among 12 699 prenatal samples, investigated at our institution over a 10-year period from 1980 to 1990. FISH (fluorescence in situ hybridization) techniques were employed to identify the chromosomal origin of the marker chromosomes. Five cases were familial, all derived from acrocentric chromosomes, and all without apparent phenotypic effects in the children. Nine cases represented de novo aberrations. In two cases (one with a marker from chromosome 14 or 22, the other with a ring-like marker derived from chromosome 17), the pregnancies continued and apparently normal babies were delivered at term, but the child with a marker derived from chromosome 17 showed slight psychomotor retardation at 2 years of age. All other pregnancies with de novo markers were terminated. In three cases, significant abnormalities were found at autopsy. One of these had an isochromosome 12p and the phenotype was consistent with Pallister-Killian syndrome. In conclusion, marker chromosome identification, as well as clinical follow-up, is essential for the purpose of improving genetic counselling.  相似文献   

12.
Marker chromosomes are supernumerary chromosomes of unknown origin and are seldom found in prenatal diagnosis. Application of fluorescent in situ hybridization (FISH) allows the identification of the chromosomal origin of markers. Estimation of the risk of an abnormal phenotype outcome can be enabled by collecting data on phenotypes associated with markers of the same chromosomal origin. So far only very few cases of prenatal diagnosis of de novo supernumerary markers derived from chromosome 16 have been reported. Here the prenatal diagnosis of a de novo supernumerary marker chromosome 16 is described and the relevant literature discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In situ hybridization using a series of alphoid DNA probes has demonstrated the origin of two small accessory mosaic marker chromosomes ascertained from 1079 amniocenteses. These markers appeared to be de novo, derived from acrocentric chromosomes, and identical by traditional cytogenetic staining (G, Q, C, AgNOR, Hoechst-distamycin). Molecular characterization showed that one marker had originated from chromosome 14, the other from chromosome 22. Clinical outcome in both cases was normal.  相似文献   

14.
We studied 201 pregnancies that were established by in vitro fertilization and embryo transfer (IVF–ET) and compared the frequency of cytogenetic abnormalities with that found in a large control population matched for indication group (advanced maternal age) and time of sampling. A total of 252 IVF–ET fetuses were cytogenetically analysed by either chorionic villus sampling (CVS; n = 80) or amniocentesis (n = 172). Eleven chromosome abnormalities were found in the CVS group (13·8 per cent); among them, a 45, X/46, X, dic(q11)/46, X, del(Y)(q11) mosaic that was found in an IVF pregnancy established by intracytoplasmic sperm injection (ICSI), four cases of trisomy 21, and three cases of trisomy 7 confined to the placenta. The results indicate a statistically significant three-to five-fold increase in both confined placental abnormalities (P<0·008) and true fetal chromosome anomalies (P<0·04). In the amniocentesis group, identical rates (1·7 per cent) of chromosome abnormalities were found in the IVF–ET and control groups. It is concluded that late first trimester, but not early second trimester, IVF–ET pregnancies are characterized by an increased frequency of cytogenetic abnormalities found at prenatal diagnosis.  相似文献   

15.
A prospective study was undertaken to evaluate the use of fluorescence in situ hybridization (FISH) for the detection of trisomy 21 in interphase nuclei of uncultured amniotic fluid cells. Five hundred cases were analysed in situ and classified as normal or abnormal; the results were subsequently checked against the cytogenetic findings. Four hundred and ninety-three were correctly identified as normal with an 86·6 per cent average frequency of scored nuclei exhibiting two signals; six cases were correctly identified as trisomic for chromosome 21 with 81·7 per cent of scored nuclei exhibiting three signals; and one abnormal case involving an unbalanced chromosome 21·21 translocation was falsely scored as normal due to poor hybridization/detection efficiency. The method has been substantially improved and simplified so that it is suitable for the rapid detection of trisomy 21. As aneuploidy detection in interphase does not identify structural chromosome aberrations, it is not a substitute for fetal chromosome analysis.  相似文献   

16.
A sex chromosome deletion was identified in the course of prenatal diagnosis for maternal age. Ultrasound pictures revealed male fetal sex and a comparison with the father's Y chromosome suggested that the altered chromosome might be a de novo deletion of the Y chromosome. DNA hybridization with five human Y-specific probes shows that, among the Y-specific sequences recognized by the probes, only two of them are absent. The normal infant, at birth, was mosaic 46, XYq- /46,XY.  相似文献   

17.
A prospective 3-year collaborative study was undertaken in 1987 to collect cytogenetic data from diagnostic chorionic villus samples (CVS) in the U.K. in order to determine the predictive value of the chromosome abnormalities encountered. Twenty-seven laboratories contributed a total number of 7595 cases, of which 97·6 per cent were successful. Excluding single cell anomalies, a total of 480 cytogenetic abnormalities were reported, of which 137 were familial structural rearrangements and 343 were de novo problems. Non-mosaic trisomies of chromosomes 13, 18, and 21 (n=157), non-mosaic sex chromosome abnormalities (n=33), and triploidy (n=6) were all confirmed in cells of fetal origin where follow-up information was available. Of the nine remaining non-mosaics including tetraploidy, trisomies of other autosomes, and extra markers, only a trisomy 16 and a case of a supernumerary marker proved genuine. Eighty-eight cases of mosaicism were reported to the study, of which only nine were confirmed as genuine: two cases involving chromosome 13, one trisomy 18, two examples of extra marker chromosomes, three 45,X, and one 47,XXX. There were no reports of false-negative findings. Presumptive maternal cell contamination was encountered in 39 cases, a detected incidence of 0·5 per cent. Four cases of presumptive ‘vanishing twin’ were recorded: in three of these, direct preparations showed a female karyotype, whereas cultures indicated a male (with male fetuses in two cases). The fourth case was of a female fetus with male and female cells in the CVS cultures. Subtle structural chromosome abnormalities were missed in three instances. Accurate prediction of the fetal karyotype was shown to require detailed knowledge of both the nature and the distribution of abnormal cells in the extra-embryonic tissues. In many cases, this could only be made where results from direct preparations and cultured cells were available. A number of conclusions were reached from these and similar data in the literature regarding the reliability of chromosome findings in CVS.  相似文献   

18.
A de novo paracentric inversion of chromosome 11 identified through antenatal diagnosis is described along with long-term follow-up information on the child and discussion of reported experiences with de novo inversions.  相似文献   

19.
An i(Yp) is a rare marker chromosome. We present a case of de novo 46,X,i(Yp) detected prenatally in an amniotic fluid specimen. Fluorescence in situ hybridization (FISH) studies using a panel of Y-specific biotinylated DNA probes identified the marker chromosome as i(Yp). Comparative genomic hybridization (CGH) studies further confirmed the diagnosis. Upon pregnancy termination, external examination of the fetus revealed a generally well-developed male fetus with slight facial dysmorphism and prominent rocker-bottom feet. The molecular cytogenetic data in this case proved very useful in genetic counselling and served as a good example illustrating the important role of molecular techniques for accurate identification of marker chromosomes.  相似文献   

20.
A comparison of the use of chromosome 21-specific libraries, DOP-PCR 21 paints, yeast artificial chromosome (YAC) clones, single cosmids, and a 21q cosmid contig as probes for the detection of the copy number of chromosome 21 in interphase cells by fluorescence in situ hybridization shows that the cosmid contig is a satisfactory probe for interphase analysis of chromosome 21. The contig cCMP21.a, which is 55 kb in length, is highly chromosome 21-specific and produces intense, compact signals in a high proportion of interphase cells. A retrospective blind analysis of coded uncultured amniotic fluid samples correctly detected four trisomy 21 cases out of 49 samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号