首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mullite-based glass-ceramics were produced from aluminium hydroxide sludge resulting from the anodisation process and waste glasses. Phase development for crystallisation of amorphous mullite was investigated between 900°C and 1200°C. The kinetic parameters such as activation energy of crystallisation and Avrami exponent for the samples were evaluated from differential thermal analysis curves using various heating rates (5–30°C) and particle size ranges ( < 45, 80–125 and 355–400 μm). The growth morphology parameters ‘n’ and ‘m’ are in the range of 2.5–5.4 and 1.5–4.4, respectively, indicating that bulk nucleation is dominant in mullite crystallisation followed by two- to three-dimensional growth of mullite crystals controlled by diffusion from a varying number of nuclei.  相似文献   

2.
Assessment of physicochemical parameters of Ganga Canal water was carried out during 2012–2013 at Haridwar (Uttarakhand) with two different sites, i.e., Bhimgoda Barrage (site 1—control site) and Bahadrabad (site 2—contaminated site), where canal water flows with loads of pollution from highly commercial and industrial areas. During investigation, maximum turbidity (287.72 ± 56.28 JTU), total solids (1167.60 ± 303.90 mg l?1), free CO2 (1.88 ± 0.22 mg l?1), total hardness (60.14 ± 1.13 mg l?1), pH (7.1 ± 0.13), nitrate (0.048 ± 0.010), nitrite (0.019 ± 0.001), biochemical oxygen demand (2.866 ± 1.098), chemical oxygen demand (6.8 ± 2.61) and phosphate (0.087 ± 0.015), while minimum velocity (1.71 ± 0.19 ms?1), transparency (0.12 ± 0.08 m) and dissolved oxygen (7.95 ± 0.44 mg l?1) were recorded in monsoon season at site 2 in comparison with site 1. The mean values of these parameters were compared with WHO and ISI standards and found significant differences (p < 0.05) in the mean values of turbidity, total solids, pH, dissolved oxygen, free CO2 and total hardness with sampling sites. The turbidity of both the sites 1 and 2 was recorded above the permissible limit. Turbidity of site 2 is much higher than of site 1, so it is counted as more polluted. The values of the studied parameters were more during monsoon season and summer season at site 2 as compared to site 1. The results indicated that most of the physicochemical parameters from Ganga Canal system were within or at periphery in comparison with permissible limit of ISI and WHO for drinking water and therefore may be suitable for domestic purposes, but it requires perceptible consideration due to intense changes in climate and increase in pollution.  相似文献   

3.
Nitrogen fertilization (N) is commonly known as a main source of direct nitrous oxide (N2O) emission from agricultural soils. An area of 38 % of the total land surface of Poland was covered by agricultural soils in 2009. In this paper, we aimed at analyzing data regarding the land exploitation for 13 selected subareas of Poland between 1960 and 2009. Seven out of the 13 subareas studied are located in the West (area A), and six subareas are located in southeast of Poland (area B). The total area covered by large farms (>20 ha) differed largely, between area A (10.6 %) and area B (0.9 %) in 2009. Both areas varied in terms of the amount of fertilizers used annually, average crop yield and crop structure. Average direct emissions of N2O from agricultural soils were 1.66 ± 0.09 kg N2O–N ha?1 a?1 for area A, 1.39 ± 0.07 kg N2O–N ha?1 a?1 for area B and 1.46 ± 0.07 kg N2O–N ha?1 a?1 for the whole country between 1960 and 2009.  相似文献   

4.
Efficient use of energy helps to achieve increased production and productivity and contributes to the economy, profitability, and competitiveness of agricultural sustainability of rural communities. Evaluation of wheat and barley production systems in view of energy balance was conducted in Khorasan Razavi Province, Iran. Data were collected by using a face-to-face questionnaire from wheat and barley fields in 2011. Results revealed that total energy input for wheat was 51,040 MJ ha?1 and for barley 44,866; in wheat and barley systems, renewable energy was consumed by 25.43 and 23.53 %, while non-renewable energy was consumed by 74.57 and 76.47 %, respectively. Energy use efficiency, energy productivity, and net energy were 1.7 kg MJ?1, 0.088 kg MJ?1, and 35,987 MJ ha?1 in wheat system and 1.83 kg MJ?1, 0.092 kg MJ?1, and 33,833 MJ ha?1 in barley system, respectively. Energy intensiveness in wheat fields (61.84 MJ $?1) was higher than in barley fields (58.71 MJ $?1). Also, benefit-to-cost ratio in wheat system (1.59) was higher than in barley system (1.35). In general, production in barley fields was more sustainable than wheat production because, in view of ecological indices such as amount of energy use and renewable energy consumption, it was more environment-friendly production.  相似文献   

5.

Globally, it is established that the partial lockdown system assists to improve the health of the total environment due to inadequate anthropogenic actions in different economic sectors. The ample research on fitness of environment has been proved that the strict imposition of lockdown was the blessings of environment. The river Damodar has historical significance and lifeline for huge population of Jharkhand and West Bengal state of India but in the recent years the water quality has been deteriorated due to untreated industrial effluents and urban sewage. The main objective of this study is to examine the water quality of river Damodar during and prelockdown phase for domestic use and restoration of river ecosystem. A total of eleven (11) effluent discharge sites were selected in prelockdown and during lockdown phase. A new approach of water quality assessment, i.e., water pollution index (WPI) has been applied in this study. WPI is weightage free, unbiased method to analysis of water quality. The result shows that the physical, chemical and heavy elements were found beyond the standard limit in prelockdown period. The cation and anion were arranged in an order of Na2+ ?>?K+ ?>?Ca2+ ?>?Mg2+ and Cl??>?So4??>?No3??>?F? in both the sessions. WPI of prelockdown showed that about 100% water samples are of highly polluted. WPI of lockdown period showed that around 90.90% samples improved to ‘good quality’ and 9.10% of samples are of ‘moderately polluted.’ Hypothesis testing by ‘t’ test proved that there was a significant difference (ρ?=?0.05%) in values of each parameter between two periods. Null hypothesis was rejected and indicated the improvement of river water quality statistically. Spatial mapping using Arc GIS 10.4 interpolation (IDW) helps to understand spatial intensity of pollution load in two periods. This research study should be helpful for further management and spatial diagnosis of water resource of river Damodar.

  相似文献   

6.
The production of energy crops in Germany is a growing agronomic sector and is expected to occupy a substantial share of farmland in the near future. At the same time, there are concerns that energy crops might cause increased nitrogen pollution of soil water, surface water and groundwater. Therefore, the Federal State of Saxony, Germany, funded a study on potential effects of an intensified cultivation of energy crops. In frame of this study, we used the Web GIS-based model STOFFBILANZ to simulate N leaching from the rooting zone and N loads of surface water for a reference scenario and an energy crop scenario. For the reference scenario, we used data representing the crop cultivation for the year 2005 at municipality level. We found that the total loads for N leaching from the rooting zone of cropland are highest for the loess region (8,067 t year?1), followed by mountainous region (6,797 t year?1) and lowland (5,443 t year?1). However, highest N fluxes in the leachate from rooting zones have been simulated for lowland (40.6 kg ha?1 year?1) and mountainous region (37.1 kg ha?1 year?1), while nitrate concentrations of leachate were highest for the lowland (101.8 mg l?1). In terms of diffuse N input into surface water, the mountainous region is the most important source area (total N load 6,380 t year?1, flux 34.6 kg ha?1 year?1). Retention by in-stream processes accounts for 15 % (3,784 t year?1) of the total N load leaving the study area (25,136 t year?1). In the 2020 energy crop scenario, shares of rape and silage maize (id., ensiled corn) were limited for each municipality to a maximum of 25 and 33 %, respectively. The conversion of grasslands to crop farming was not allowed. Under these conditions, we found slight to substantial reductions of nitrogen loads for leachate from the rooting zone and for surface waters. The simulated reduction depends strongly on local conditions. Only small reductions (ca. 4–8 %) were found for the lowlands and mountainous regions of Saxony, while reductions for the loess region were substantial (ca. 22 %). A major outcome of our study is that the cultivation of energy crops might reduce N loss if certain preconditions are assumed, for example, without conversion of grasslands to crop farming. However, effects might vary widely depending on local conditions.  相似文献   

7.
We estimated carbon dioxide (CO2) and methane (CH4) emissions by diffusion, ebullition, and degassing in turbines from a semi-arid hydropower reservoir in northeastern Brazil. Sampling sites were allocated within the littoral and deeper waters of one embayment, the main-stream, and at turbines. Annual carbon emissions were estimated at 2.3?×?105?±?7.45?×?104 t C year?1, or in CO2-equivalents (CO2-eq) at 1.33?×?106?±?4.5?×?105 t CO2-eq year?1. Diffusion across the water surface was the main pathway accounting for 96% of total carbon emissions. Ebullition was limited to littoral areas. A slight accumulation of CO2, but not of CH4, in bottom waters close to the turbines inlet led to degassing emissions about 8?×?103 t C year?1. Emissions in littoral areas were higher than in main-stream and contribute to 40% of the total carbon. Carbon (C) emissions per electricity generated, at 60% of installed capacity, is 0.05 t C-CO2-eq MWh?1. The ratio increases to 0.09 t C-CO2 MWh?1, equating 80% of the emissions from natural gas and 40% of diesel or coal power plants. Retention time and benthic metabolism were identified as main drivers for carbon emissions in littoral areas, while water column mixing and rapid water flow are important factors preventing CH4 accumulation and loss by degassing. Our results indicate that Itaparica Reservoir, located in the semi-arid region of Northeastern Brazil, acts as a source of GHGs. Management measurements are needed to prevent emissions to raise in the future.  相似文献   

8.
Overuse of nitrogen (N) fertilizers in agriculture activities has caused severe water pollution in China. The lack of data at producer level hampers decision makers in the development and implementation of efficient policies to curb excessive N-fertilizer use. In a survey of 300 farm households in the Liangzihu Lake basin, we identified factors associated with farmers’ decisions on N-fertilizer use and application rate. Household survey and multiple linear regression models indicate that the average application rate in the study region is 229 kg N ha?1, which exceeds the recommended rate for maximum profit for cereal crops (maize, wheat, and rice) in China of 150–180 kg N ha?1. High N-application rates are associated with low farmland productivity (coefficient = ?15.66, p = 0.02), a high share of off-farm income (coefficient = 27.14, p = 0.003), and a low education level of the household head (coefficient = ?10.83, p = 0.039). Neither physical infrastructure nor access to input markets appears to be related to N-application rates. It may be concluded that excessive use of N in agriculture of Central China is mainly a problem of insufficient awareness and high share of off-farm income.  相似文献   

9.
Closed landfills need after-closure rehabilitation. The chosen option should ensure greenhouse gases release, from the landfill, is not promoted once settled. The objective of this study was to estimate and confront, during different seasons, CH4, CO2 and N2O emissions under three vegetation covers in a closed landfill in Buenos Aires, Argentina. CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide) emissions from landfill’s technosol under spontaneous vegetation (control), Pennisetum purpureum and Miscanthus giganteus (biomass crops), were quantified with non-steady-state non-flow-through chambers, in July 2014 and from February to July 2015. A linear regression analysis was performed to relate the variables “flux of a gas” and “concentration of that gas” from the 3 treatments and 6 dates, separating the 5 sampling times. A high correlation between concentrations and fluxes of CO2 and N2O was found, but no correlation was established for CH4. Mean emissions (2014–2015) varied from: ?2.3 to 639.41 mgCH4 m?2 day?1, 3884 to 46,365 mgCO2 m?2 day?1 and 0.40 to 14.59 mgN2O m?2 day?1. Vegetation covers had no significant effect on CH4 and N2O concentration in time, but they had on CO2 concentration. Season of the year had a significant effect on concentration of the three gases. This is the first study on CH4, CO2 and N2O emissions from a landfill closed 27 years ago covered with biomass crops.  相似文献   

10.
Declining crop and livestock production due to a degrading land resource base and changing climate among other biophysical and socio-economic constraints, is increasingly forcing rural households in Zimbabwe and other parts of Southern Africa to rely on common natural resource pools (CNRPs) to supplement their household food and income. Between 2011 and 2013, we combined farmer participatory research approaches, remote sensing and geographic information systems (GIS) to (1) understand the contribution of CNRPs to household food and income in Dendenyore and Ushe smallholder communities in Hwedza District, eastern Zimbabwe and (2) assess changes of the CNRPs in both space and time, and their implications on climate change adaptation. Across study sites, wetlands and woodlands were ranked as the most important CNRPs. Extraction and use patterns of products from the different pools differed among households of different resource endowment. Resource-constrained households (RG3) sold an average of 183 kg household?1 year?1 of wild loquats fruits (Uapaca kirkiana), realising about US$48, while resource-endowed farmers (RG1) had no need to sale any. The RG3 households also realised approximately US$70 household?1 year?1 from sale of crafts made from water reeds (Phragmites mauritianus). Empirical data closely supported communities’ perceptions that CNRPs had declined significantly in recent years compared with two to three decades ago. More than 60 % of the respondents perceived that the availability of natural resources drawn from wetlands and woodlands, often used for food, energy and crafts, has decreased markedly since the 1980s. Classification of land cover in a GIS environment indicated that CNRPs declined between 1972 and 2011, supporting farmers’ perceptions. Overall, woodlands declined by 37 % in both communities, while the total area under wetlands decreased by 29 % in Ushe, a drier area and 49 % in Dendenyore, a relatively humid area. The over-reliance in CNRPs by rural communities could be attributed to continued decline in crop yields linked to increased within-season rainfall variability, and the absence of alternative food and income sources. This suggests limited options for rural communities to adapt to the changing food production systems in the wake of climate change and variability and other challenges such as declining soil fertility. There is therefore a need to design adaptive farm management options that enhance both crop and livestock production in a changing climate as well as identifying other livelihood alternatives outside agriculture to reduce pressure on CNRPs. In addition, promotion of alternative sources of energy such as solar power and biogas among rural communities could reduce the cutting of trees for firewood from woodlands.  相似文献   

11.
Abandoned peat extraction areas are continuous emitters of GHGs; hence, abandonment of peat extraction areas should immediately be followed by conversion to an appropriate after-use. Our primary aim was to clarify the atmospheric impact of reed canary grass (RCG, Phalaris arundinacea L.) cultivation on an abandoned peat extraction area and to compare it to other after-treatment alternatives. We performed a life-cycle assessment for five different after-use options for a drained organic soil withdrawn from peat extraction: (I) bare peat soil (no management), (II) non-fertilised Phalaris cultivation, (III) fertilised Phalaris cultivation, (IV) afforestation, and (V) rewetting. Our results showed that on average the non-fertilised and fertilised Phalaris alternatives had a cooling effect on the atmosphere (?10,837 and ?477 kg CO2-eq ha?1 year?1, respectively), whereas afforestation, rewetting, and no-management alternatives contributed to global warming (9,511, 8,195, and 2,529 kg CO2-eq ha?1 year?1, respectively). The main components influencing the global warming potential of different after-use alternatives were site GHG emissions, carbon assimilation by plants, and emissions from combustion, while management-related emissions played a relatively minor role. The results of this study indicate that, from the perspective of atmospheric impact, the most suitable after-use option for an abandoned peat extraction area is cultivation of RCG.  相似文献   

12.
The behaviour of a decentralized polygeneration plant providing synthetic natural gas (SNG), steam and electrical power is simulated in three scenarios in this study. The plant size is based on an assumed capacity of decentralized polygeneration plants processing 1070 m3 h?1 (STP) of syngas. 396 m3 h?1 (STP) of raw SNG, 0.4 t h?1 of steam at 5 bar and 670 kW of electrical power can be generated by the plant at the reference scenario. Methanation reactor and steam generator are modelled in detail. Further results indicate that such a polygeneration plant can provide positive and negative operation reserves for the electricity network to the extent of 100% of the reference power output, while the amount of generated steam varies by less than 40%. At the same time, the generated SNG quality keeps constant. Lower variations in the amount of generated steam are applicable when reducing the operation reserve capacity.  相似文献   

13.
The Senegal sole, Solea senegalensis, is a species of flatfish that has several distinct cohorts of 0-group juveniles which use estuarine nurseries in summer and winter. The early cohort is more abundant and grows faster than the late cohort that stays in the nurseries during winter; however, climate warming may have an impact on the dynamics of this species’ juveniles. This study aimed to compare mortality, metabolic response and growth of S. senegalensis juveniles at different temperatures, reflecting present-day temperature (winter—12 °C; summer—24 °C) and future temperature (plus 3 °C) conditions, in estuarine nurseries in the southern European population. Mortality was low at 12 °C, being only 10 %, increasing to 30 % at 15 °C, 40 % at 24 °C and at 27 °C it hit 70 %. Metabolic rate increased steadily with increasing temperatures, yet it increased steeply from 24 to 27 °C. Thermal sensitivity was high for the temperature interval between 24 and 27 °C. Growth was very slow at 12 °C, at a rate of 0.03 mm day?1, increasing to 0.22 mm day?1 at 15 °C, and to 0.60 mm day?1, at 24 °C. However, at 27 °C growth rapidly declined to 0.12 mm day?1. Warming will be beneficial for the late cohort, resulting in a major increase in growth. However, the early cohort will not benefit from warming, due to high mortality and arrested growth, which clearly indicates that this species is under severe thermal stress at 27 °C. Thus, here we show, for the first time, that climate change may induce contrasting seasonal impacts on fish bio-ecology and physiology, namely in species with several cohorts over the course of the year. Phenotypic and/or genotypic plasticity may limit the impacts of climate change.  相似文献   

14.
The adsorptive potential of activated carbon prepared by chemical activation of Cocoa pod husk (CPHAA) to remove Congo red (CR) dye from its aqueous solution was investigated in this study. CPHAA was characterised using Energy Dispersive X-Ray, Scanning Electron Micrograph and Fourier Transform Infrared Spectroscopy techniques. The effects of contact time, initial dye concentration, pH and solution temperature were studied. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, with maximum monolayer adsorption capacity of 43.67 mg/g. The kinetic data were fitted to Pseudo-first-order, Pseudo-second-order, Elovich and Intraparticle diffusion models; the pseudo-second-order kinetic model provided the best correlation. Thermodynamic parameters such as standard enthalpy (ΔHo), standard entropy (ΔSo) and standard free energy (ΔGo) were evaluated. The thermodynamic study showed that the process is endothermic, spontaneous and feasible. The mean free energy of adsorption shows that the mechanism is by physisorption. CPHAA was found to be an effective adsorbent for the removal of CR dye from aqueous solution.  相似文献   

15.
Despite there being considerable research and knowledge surrounding the risks of climate change on agricultural productivity, fewer studies have examined risks from a whole-of-chain perspective (i.e. from producer to consumer) and the perceptions of consumers about the climate adaptation strategies of food businesses. This paper presents the findings of a survey of 1532 Australian consumers and how they might respond to a food company’s climate adaptation strategy. Three respondent archetypes, ‘Eco-warriors’ (n = 557), ‘Undecideds’ (n = 600) and ‘Abdicators’ (n = 375), were identified based on their perceptions of risks associated with climate change and their attitudes towards climate adaptation. Further analysis was carried out to understand how each group of respondents would respond to adaptation strategies employed by food companies. Based on the findings of this study, two main challenges are presented for food value chains: (1) translating consumer needs and preferences to niche opportunities arising from adaptation and (2) understanding how best to communicate adaptation benefits based on varying attitudes and information needs. By addressing these challenges, synergies between adaptation goals and competitive strategies in food value chains may be achieved.  相似文献   

16.
The economic marketability of a brachiopod, Lingula was studied at three coastal mangrove sites, specifically based on socioeconomic parameters from 10 villages that utilized Lingula along Pearl Bay, Beilun Estuary Marine Nature Reserve, China. The significantly highest density of Lingula was at Jiao Dong (48.2 ± 35.14 individual/m2) whereas the biomass of Lingula was highest (0.76 ± 0.22 g/individual) at Gui Lao Bu. The shell size of the largest specimen was still less than that in other references. The socioeconomic study of the population related to Lingula involved a small group, and no relationship could be determined among the parameters of age range, education level, occupation, and financial status. The total economic value (320,927.4 Yuan) was based on the value of consumption whereas the value from sales was very low as recorded from Shan Xin over a three-month season. Analysis of the results to determine strengths, weaknesses, opportunities, and threats was undertaken to identify the potential of Lingula sp. to be promoted and supported in the market as a novel source of income for the local community who are associated with mangrove resources; and also to examine its potential as a new food source for the rapidly growing population of China.  相似文献   

17.
An unmodified natural adsorbent, Xanthium Strumarium, was explored for its decoloration potential for treatment of textile effluents. Batch mode experimentation was carried out to optimize several process parameters with the well characterized adsorbent. For proper assessment of optimized pathway of adsorption, adsorption isotherms were implemented to the experimental data using nonlinear method. Apart from coefficients of determination, three error analysis methods standard error (S.E.), Chi-square (χ2) statistic and residual mean square error were additionally used to determine the best fitted isothermal model for the system. Freundlich model was creditably fitted to the adsorption data with minimum errors and high R 2 values. The adsorption capacity obtained was 14.7, 15.2 and 18.7 mg g?1 at 30, 40 and 50 °C, respectively. Overall adsorption process was endothermic with positive enthalpy and entropy values. Kinetic study revealed adsorption to be a two stage process initially controlled by film diffusion followed by pseudosecond order as the rate administering step during adsorption. About 95 % decoloration was achieved in 60 min. High decoloration tendency of the opted adsorbent proved that it is an effective and cheap adsorbent for treatment of coloured effluents providing a good alternative to activated carbon.  相似文献   

18.
This work aimed to utilize four low-cost materials, namely activated carbon (AC), activated carbon–nanoparticle composite, kaolin, and olive cake, for phosphate removal. Batch mode tests were used to evaluate the performance of the adsorbents. The parameters affecting the adsorption process such as pH, initial concentration, mixing time, dosage, and temperature were studied. The obtained results showed that the removal efficiency of the adsorbents followed the order of: activated carbon–nanosilica > activated carbon > kaolin > olive cake. The addition of silica nanoparticles significantly enhanced the removal efficiency of activated carbon by 18.1% reaching a removal efficiency of 98% at 15wt% nanosilica loading. The adsorption isotherm data fitted well with Langmuir and Redlich–Peterson models with a correlation coefficient of >0.98, which indicates a monolayer homogenous adsorption. The fitness of the kinetic models was ranked as: pseudo-second-order > pseudo-first-order > intraparticle model. The calculated values of ΔH° = 23.4 kJ/mole, ΔS° = 0.11 kJ/mole, and ΔG = ?7.4 to ?11.8 kJ/mole indicated the endothermic and spontaneous nature of adsorption. The positive value of activation energy (17.66 kJ/mole) and the very low value of the sticking probability (2.4 × 10?4) suggest high indefinite sticking of the phosphate ions to the adsorbent surface. The removal efficiency increased with time, dosage, and temperature, while it decreased with the increase in the initial concentration at an optimum pH of 7. The obtained results buttressed the benefit of using silica nanoparticles to enhance activated carbon capacity for phosphate removal, while kaolin and olive cake provided lower removal.  相似文献   

19.
The objective of this research is to investigate the reduction in fuel consumption and emission in spark ignition engine using blended bioethanol-gasoline and novel radiator-tube heater. Different percentages of ethanol – 0, 5, 10, 15, 20, 25 and 30% – are employed. The blended fuel is then pre-heated by sending it into a tube-heater-installed upper tank radiator which has different shape. The results show a significant reduction in fuel consumption and emission in engine. The best economical fuel consumption occurs in the tube-heater with a fin pipe of 10 mm space at 2.153 × 10?3 cc per cycle or 5.632%. However, the most economical fuel consumption occurs when 25% of bioethanol is added to fuel at 3.175?×?10?3 per cycle. This decreases fuel consumption by 8.306%. The highest decrease in fuel consumption occurs when fuel blended with 25% of bioethanol and tube-heater of 10 mm 6.236?×?10?3 cc per cycle or 16.313% is combined. In terms of emission reduction, the tube-heater with a space of 20 mm between fins (Tube 20) using a fuel mixture of 25% ethanol and 75% gasoline produced the lowest CO emissions.  相似文献   

20.
The ruthenium sawhorse has proven effective in the conversion of trans-cinnamic acid, and substituted trans-cinnamic acids, giving an effective source of biobased styrene and styrene analogues. The reaction is especially versatile, as it achieves product without utilising co-reagents. However, the optimum conditions and substrate scope of the reaction remain unexplored. This report covers the decarboxylation of a series of cinnamates with different structures. Apparent activation energies ranging from 66 to 142 kJ mol?1 were uncovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号