共查询到13条相似文献,搜索用时 15 毫秒
1.
S.P. Wategave M.S. Sawant M.S. Tandale G. Suresh V.S. Yaliwal 《International Journal of Sustainable Engineering》2014,7(1):71-81
Increasing cost of fossil fuels, environmental threats from exhaust emissions and their depleting nature have generated intense international interest in developing renewable and alternative fuels for internal combustion engines. This study investigates the suitability of different non-edible-derived biodiesels such as cottonseed oil methyl ester (COME), honne oil methyl ester (HnOME) and honge oil methyl ester (HOME) to four-stroke, single-cylinder compression ignition (CI) engine. Engine tests were conducted to study the effect of fuel injection timing (IT), fuel injector opening pressure (IOP) and injector nozzle geometry on the performance, combustion and emission characteristics of COME, HnOME and HOME in the modified CI engine. IT was varied from 19° to 27° before top dead centre (bTDC) in steps of 4° bTDC; IOP was varied from 205 to 240 bar in steps of 10 bar. Nozzle injectors of three to five holes, each of 0.3 mm size, were selected for the study. It was concluded that a retarded IT of 19° bTDC increased IOP of 230 bar, and four-hole nozzle injector of 0.3 mm size resulted in overall better engine performance with increased brake thermal efficiency and reduced hydrocarbon and carbon monoxide smoke emissions for the fuels tested. 相似文献
2.
《International Journal of Sustainable Engineering》2013,6(2):136-144
This study aims at evaluation of the effect of injection timing on the combustion, performance and emissions of a small power diesel engine, commonly used for agriculture purpose, running on pure bio-diesel, prepared from Karanj (Pongamia pinnata) vegetable oil. The effect of varying injection timing was evaluated in terms of thermal efficiency, specific fuel consumption, power and mean effective pressure, exhaust temperature, cylinder pressure, rate of pressure rise and the heat release rate. Furthermore, the effects on emissions of unburnt hydrocarbons, oxides of nitrogen, carbon monoxide and carbon dioxide and smoke were also studied. It was found that retarding the injection timing by 3° enhances the thermal efficiency by about 8.2% with reduction in emission of oxides of nitrogen. 相似文献
3.
Increasing petroleum prices, increasing threat to the environment from exhaust emissions and global warming have generated intense international interest in developing renewable and alternative non-petroleum fuels for engines. Evolving technology and a recurring energy crisis necessitates a continuous investigation into the search for sustainable and clean-burning renewable fuels. In this paper, cottonseed oil methyl ester (COME) was used in a four-stroke, single-cylinder variable compression ratio diesel engine. Tests were carried out to study the effects of fuel injection timing, fuel injector opening pressure (IOP) and injector nozzle geometry on the performance and combustion of COME biodiesel fuel used in a compression ignition engine with a single fuel mode. Fuel injection timing varied from 19° to 27° before top dead centre (bTDC) in incremental steps of 4° bTDC; fuel IOP varied from 210 to 240 bar in incremental steps of 10 bar. Fuel nozzle injectors with three, four and five holes, each of 0.3 mm size, were selected for the study. The results suggested that with retarded injection timing of 19° bTDC, increased IOP of 230 bar and a four-hole nozzle injector of 0.3 mm size resulted in overall better engine performance with an increased brake thermal efficiency and reduced HC, CO and smoke emission levels. 相似文献
4.
《International Journal of Sustainable Engineering》2013,6(6):349-365
Alternative fuels have numerous advantages compared to fossil fuels as they are renewable, biodegradable; provide energy security and foreign exchange saving besides addressing environmental concerns and socio-economic issues as well. Renewable fuels can be used predominantly as fuel for both transportation and power generation applications. Improved engine performance with reduced engine exhaust emissions is a major research objective in engine development. Today, the use of biomass derived producer gas is more relevant for addressing rural power generation and is a promising technique for controlling both nitric oxide (NOx) and soot emission levels. In view of this, exhaustive experiments on the use of Honge oil methyl ester (HOME)–Producer gas in a dual fuel engine have been carried out with an intension of improving its fuel efficiency. This paper mainly presents results on a single cylinder four stroke direct injection diesel engine operated in dual fuel mode using HOME–Producer gas combination with and without bio-ethanol addition and thermal barrier coating (TBC). Further, the results were compared with diesel–producer gas mode of operation. Experimental investigation on dual fuel operation using HOME+5% bioethanol (BE5)–Producer gas operation with TBC showed 12.35% increased brake thermal efficiency with decreased hydrocarbon and carbon monoxide emissions and increased NOx emission levels compared to HOME–Producer gas mode of operation. 相似文献
5.
《International Journal of Sustainable Engineering》2013,6(4):248-261
ABSTRACTRenewable and sustainable fuels for diesel engine applications provide energy protection, overseas exchange saving and address atmospheric and socio-economic concerns. This study presents the investigational work carried out on a single cylinder, four-stroke, direct injection diesel engine operated in dual fuel (DF) mode using renewable and sustainable fuels. In the first phase, a Y-shaped mixing chamber or venture was developed with varied angle facility for gas entry at 30°, 45° and 60°, respectively, to enable homogeneous air and gas mixing. Further effect of different gas and air mixture entry on the DF engine performance was studied. In the next phase of the work, hydrogen flow rate influence on the combustion and emission characteristics of a compression ignition (CI) engine operated in DF mode using diesel, neem oil methyl ester (NeOME) and producer gas has been investigated. During experimentation, hydrogen was mixed in different proportions varied from 3 to 12 l/min (lpm) in step of 3 lpm along with air-producer gas and the mixtures were directly inducted into engine cylinder during suction stroke. Experimental investigation showed that 45° Y-shaped mixing chamber resulted in improved performance with acceptable emission levels. Further, it is observed that investigation showed that at maximum operating conditions and hydrogen flow rate of 9 lpm, Diesel–producer gas and NeOME–producer gas combination showed increased thermal efficiency by 13.2% and 3.8%, respectively, compared to the DF operation without hydrogen addition. Further, it is noticed that hydrogen-enriched producer gas lowers the power derating by 5–10% and increases nitric oxide (NOx) emissions. However, increased hydrogen addition beyond the 12 lpm leads to sever knocking.Abbreviations: NeOME: Neem oil methyl ester; BTE: brake thermal efficiency; CI: compression ignition; ITE: indicated thermal efficiency; PG: producer gas; CA: crank angle; K: Kelvin; BP: brake power; IP: indicated power; H2: hydrogen; HC: unburnt hydrocarbon; CO: carbon dioxide; CO2: carbon dioxide; NOx: nitric oxide; HRR: heat release rate; %: percentage; PPM: parts per million; CMFIS: conventional mechanical fuel injection system. 相似文献
6.
《International Journal of Sustainable Engineering》2013,6(3):265-279
Stringent environmental policies and the ever increasing demand for energy have triggered interest in novel combustion technologies that use alternative fuels as energy sources. Of these, pilot-ignited compressed natural gas (CNG) engines that employ small biodiesel pilot to ignite a premixed natural gas–air mixture have received considerable attention. This paper discusses the effect of mixing chamber venturi, injection timing, compression ratio and exhaust gas recirculation (EGR) on the performance of dual-fuel engine operated on biodiesel derived from honge oil and is called honge oil methyl ester (HOME) and CNG. The proposed study mainly focuses on the manifold induction of CNG along with HOME injection. However, CNG can also be injected using port or direct gas injector (Lakshmanan and Nagarajan 2010, Energy 35, pp. 3172–3178). The future study will involve these methods of CNG injection. From this study, it is concluded that an advanced injection timing and an increased compression ratio resulted in increased brake thermal efficiency and reduced smoke, hydrocarbons and carbon monoxide emissions. However, nitrogen oxides (NO x ) emission increased significantly. The increased NO x emission was effectively reduced with EGR method. A mixing chamber venturi of 3 mm size, injection timing of 27° before top dead centre (BTDC), compression ratio of 17.5 and 10% EGR were found to be optimum for the modified compression ignition engine that was operated on CNG–HOME dual-fuel mode. 相似文献
7.
V.S. Yaliwal K.M. Nataraja P.G. Tewari 《International Journal of Sustainable Engineering》2014,7(4):330-340
Alternative and renewable fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable, besides providing food and energy security and foreign exchange savings and addressing environmental and socio-economic issues. Therefore, these renewable fuels can be used predominantly in compression ignition (CI) engines for transportation purposes and power generation applications. Today, the use of biomass-derived producer gas is more relevant for addressing rural power generation and is also a promising technique for controlling both NOx and soot emission levels. Although a producer gas–biodiesel-operated dual-fuel diesel engine exhibits lower performance, they are independent from the use of fossil fuels. The lower performance of the engine could be due to the slow-burning and lower calorific value of producer gas. For this purpose, exhaustive experiments on the use of Honge oil methyl ester (HOME)–producer gas in a dual-fuel CI engine were carried out for the improvement of its fuel efficiency. This paper presents the effect of the compression ratio (CR) on the performance, combustion and exhaust emission characteristics of a single-cylinder, four-stroke, direct injection stationary diesel engine operated using HOME and producer gas in a dual-fuel mode. The results indicated that the HOME–producer gas combination exhibited lower brake thermal efficiency (BTE) with comparable emission levels with the diesel–producer gas combination at different CRs. Comparative measures of BTE, peak pressure, pressure–crank angle variation, heat release rate, smoke opacity, and hydrocarbon (HC), carbon monoxide (CO) and nitric oxide (NOx) emission levels are presented and analysed. 相似文献
8.
《International Journal of Sustainable Engineering》2013,6(1):55-65
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines have caused an interest in finding alternative fuels to diesel which are renewable and sustainable. Emission control and engine efficiency are two most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V is forcing the research towards developing new technologies for combating engine emissions. The classification of Euro IV and V norms is applicable to heavy-duty engines in Europe, where as Euro 5 is applicable to light-duty engines. This paper presents the effects of exhaust gas recirculation (EGR), swirl augmentation techniques and ethanol addition on the combustion of Honge oil methyl ester (HOME) and its blends with ethanol in a diesel engine. From the experimental work conducted, it is found that the combustion of HOME plus up to 15% ethanol blend in a diesel engine operated with optimised parameters of injection timing 23° Before Top Dead Centre and compression ratio 17.5 results in acceptable combustion emissions and improved brake thermal efficiency (BTE). The addition of ethanol increased BTE with reduced hydrocarbons (HCs), CO and smoke emissions. However, NO x emissions increased dramatically. Use of appropriate EGR reduces NO x to acceptable levels. The implementation of swirl augmentation techniques further resulted in increased BTE and considerable reduction in tail pipe emissions such as smoke, HCs, CO and NO x . The effect of swirl by providing grooves on the piston was taken into consideration to find the overall biodiesel engine performance, which gives scope for further studies. 相似文献
9.
《International Journal of Sustainable Engineering》2013,6(4):307-315
Karanja oil methyl ester (KOME), a biodiesel prepared from Karanja oil, a potential source of non-edible oil in India and a prospective alternative to the diesel fuel, shows comparable performance and considerable reduction in emissions except NOx. Exhaust gas recirculation (EGR) is a popular method of reducing the NOx emission. The aim of this experimental work was to study the potential of the cooled EGR in a direct injection compression ignition engine operating with the KOME and its blend. The study was conducted with the different EGR rates. Performance and emission parameters were compared by using diesel, KOME and its blend employing EGR and with the same fuels without EGR. The study also differentiates the effect of EGR on KOME and its blend with the neat diesel. The effect of EGR was found to be slightly higher for KOME biodiesel and its blend than for neat diesel. Increased NOx emission using KOME biodiesel was also found to be reduced by using EGR. 相似文献
10.
《International Journal of Sustainable Engineering》2013,6(4):262-271
ABSTRACTThis paper mainly focuses on the utilisation of plastic pyrolysis oil (PPO) and its’ blends with diesel and ethanol in different proportions in a modified diesel engine fitted with common rail direct injection (CRDI) facility. PPO was subsequently blended with diesel and ethanol and characterisation has been done. Experiments were conducted to investigate the impact of injection timing (IT) and injection pressure (IP) on the performance of modified CRDI engine fuelled with PPO and its blends with diesel and ethanol. From the experimental investigations, IT of 10°bTDC and IP of 900 bar were found as best operating parameters to obtain maximum brake thermal efficiency (BTE) with lowered emissions for the fuel combinations utilised in the investigations. PPO as substitute to diesel fuel could be viable if its major concern is to finding permanent resources. 相似文献
11.
《International Journal of Sustainable Engineering》2013,6(6):332-340
Alternative fuels for diesel engine applications are gaining more prominence as they have numerous advantages compared to fossil fuels. They are renewable, biodegradable; provide food and energy security and foreign exchange savings. They address environmental concerns and socio-economic issues as well. Gaseous fuels such as compressed natural gas and hydrogenated compressed natural gas (HCNG) appear more attractive fuels for diesel engine applications operated in dual-fuel mode. Such dual fuel engines can replace considerable amount of liquid-injected pilot fuels by gaseous fuels besides being friendly to the environment. A small quantity of liquid fuel injected towards the end of the compression stroke initiates combustion of the inducted gas in the dual-fuel engines. The main advantage of dual-fuel engines is their lower nitrogen oxides (NOx) and particulate emissions. Hence renewable fuels such as biodiesels and gaseous fuels can be used predominantly for transportation and power generation applications. Gaseous fuels are clean burning and are more economical as well. A suitable carburettor was designed to supply a stoichiometric mixture of air and HCNG to the modified diesel engine operated in dual-fuel mode. The biodiesel used in this study is derived from Honge oil called the Honge oil methyl ester (HOME). This paper presents the performance, combustion and exhaust emission characteristics of a single cylinder, four stroke, direct injection, stationary diesel engine operated on HOME and HCNG in dual-fuel mode. From the results it is observed that HOME–HCNG combination gave lower brake thermal efficiency (BTE) and improved emission levels when compared with diesel/HOME in single fuel operation. Lower smoke and particulate matter were obtained with dual-fuel operation. Comparative measures of BTE, peak pressure, pressure–crank angle variation, smoke opacity, hydrocarbon, carbon monoxide and NOx emissions have been made and analysed. 相似文献
12.
G. Suresh H. C. Kamath Mallikarjun Bhovi 《International Journal of Sustainable Engineering》2016,9(3):206-214
Increased petroleum prices, increased threat to the environment from exhaust emissions and global warming have generated intense international interest in developing renewable and alternative non-petroleum fuels for internal combustion engines. Evolving suitable technology for addressing energy crisis creates a continued investigation into the search for sustainable and clean-burning renewable fuels. This work investigates suitability of different non-edible-derived biodiesels such as cotton seed oil methyl ester (COME), Honne oil methyl ester (HnOME) and Rubber seed oil methyl ester (RuOME) to four stroke, single cylinder compression ignition (CI) engine. Engine tests were conducted to study the effect of fuel blending, thermal barrier coating (TBC) or Low Heat Rejection (LHR) and injector nozzle geometry on the performance, combustion and emission characteristics of COME, HnOME and RuOME in the modified CI engine. Blends of biodiesels with diesel were varied from 20 to 80% in steps of 20%. Two thermal barrier coatings of partially stabilized zirconium (PSZ) and aluminium oxide (Al2O3) were provided on the engine to make it fully adiabatic. Nozzle injectors of 3, 4 and 5 holes, with size of orifice varied from 0.2 to 0.3 mm size were selected for the study. It was concluded that B20 biodiesel blend, PSZ-coated engine and four hole nozzle injector of 0.2 mm size resulted in overall better engine performance with increased brake thermal efficiency (BTE) and reduced HC, CO, smoke emissions for the fuel combinations tested. Combustion analysis to study the effect of biodiesel blends, LHR coatings, injector nozzle geometry on the performance of the biodiesel-fuelled engine has been presented to give more insight into the behaviour of operation. 相似文献
13.
《International Journal of Sustainable Engineering》2013,6(4):265-274
During recent decades, considerable effort has been expended world-wide to reduce dependency on petroleum fuels for power generation and transportation through the search for suitable alternative fuels that are environmentally friendly. In this respect, vegetable oils are a promising alternative to diesel fuel. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming and piston ring sticking and thickening of lubrication from long-term use in diesel engines. These problems can be eliminated or minimised by transesterification of the vegetable oils to form monoesters. Although transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than those of petroleum diesel fuel. The performance of a diesel engine with such biodiesel operation can be improved further with the concept of the low heat rejection (LHR) engine. In the LHR engine, combustion surfaces on the pistons, cylinder walls and valves can be coated with ceramic materials. The objective of this study was to apply the LHR engine concept for improving engine performance when either honge biodiesel, known as honge oil methyl ester (HOME), or neem biodiesel, known as neem oil methyl ester (NOME) oils was used as an alternative fuel. For this purpose, experiments were conducted on a single cylinder, four-stroke, direct injection, water-cooled compression ignition engine using diesel, HOME and NOME oils at different injection timings of 19, 23 and 27° before top dead centre (BTDC) with and without the induction of exhaust gas recirculation (EGR). The percentage of EGR was varied from 5 to 20% in steps of 5%. The results showed that specific fuel consumption and brake thermal efficiency were improved for both of the biodiesel fuels in the LHR engine. An EGR of 10% resulted in better performance with trade-off between oxides of nitrogen and hydrocarbons/carbon monoxide emissions and hence 10% EGR is taken as the best of the range from 5 to 20%. However, readings with other EGR ratios are not reported. 相似文献