首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

2.
Herbicides applied to soils potentially affect soil microbial activity. The quantity and frequency of Roundup Ultra [RU; N-(phosphonomethyl)glycine; Monsanto, St. Louis, MO] applications have escalated with the advent of Roundup-tolerant crops. The objective of this study was to determine the effect of Roundup Ultra on soil microbial biomass and activity across a range of soils varying in fertility. The isoproplyamine salt of glyphosate was applied in the form of RU at a rate of 234 mg active ingredient kg(-1) soil based on an assumed 2-mm glyphosate-soil interaction depth. Roundup Ultra significantly stimulated soil microbial activity as measured by C and N mineralization, as well as soil microbial biomass. Cumulative C mineralization as well as mineralization rate increased above background levels for all soils tested with addition of RU. There were strong linear relationships between C and N mineralized, as well as between soil microbial C and N (r2 = 0.96 and 0.95, respectively). The slopes of the relationships with RU addition approximated three. Since the isopropylamine salt of glyphosate has a C to N ratio of 3:1, the data strongly suggest that RU was the direct cause of the enhanced microbial activity. An increase in the C mineralization rate occurred the first day following RU addition and continued for 14 d. Roundup Ultra appeared to be rapidly degraded by soil microbes regardless of soil type or organic matter content, even at high application rates, without adversely affecting microbial activity.  相似文献   

3.
Biosolids deep-row incorporation (DRI) provides high levels of nutrients to the reclamation sites; however, additions of N in excess of the vegetation requirements can potentially impair water quality. The effects of anaerobically digested (AD) and lime stabilized (LS) DRI biosolids and inorganic N fertilizer were compared on C and N transformations and transport at a reclaimed mineral sands mining site. Biosolids were applied at 213 and 426 Mg AD biosolids ha(-1) and 328 and 656 Mg LS biosolids ha)(-1) (dry mass), and inorganic N fertilizer was applied at 0 (control) and 504 kg N ha-(-1) yr(-1). Zero tension lysimeters were installed to collect leachate for determination of vertical N transport, and the biosolids seams were analyzed for N and C transformations after 28 mo aging. The leachijng masses from the DRI biosolids treatments were 139 to 291 kg ha(-1) NO3-N, 61 to 243 kg ha(-1) NH4-N, and 61 to 269 kg ha(-1) organic N, while the fertilizer treatment did not differ from the control. Aged biosolids analysis showed that total N lost over the course of 2 yr was 15.2 Mg ha(-1) and 10.9 Mg ha(-1) for LS and AD biosolids, respectively, which was roughly 50% of the N applied. Organic C losses were 81 Mg ha(-1) and 33 Mg ha(-1) for LS and AD biosolids, respectively. Our results indicated that entrenchment of biosolids in coarse-textured media should not be used as a mined land reclamation technique because the anaerobic conditions required to limit mineralization and nitrification cannot be maintained in such permeable soils.  相似文献   

4.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

5.
Recent state of forest biodiversity at the European level was reviewed and analysed with respect to the current requirements from the environmental policies as well as with respect to scientific findings in the field. The analysis reveals the main deficits and development needs, and outlines some possible courses for future action. Specific reference is given to the boreal, Atlantic and continental regions of Europe.Especially the operational definition of biodiversity, the selection of the scale and consideration of the most appropriate indicators and data collection methods are of primary importance when defining a monitoring approach. The results of a recent assessment at national scale contribute to an improved understanding, but show some shortcomings with respect to the level of detail. The high variability of the distribution, structure and composition of forests in Europe can be comprised only partially when the monitoring follows national borders. To detect changes in time for corrective measures and to be able to apply appropriate threshold values for biodiversity indicators a more detailed approach, which takes into account different bio-geographical regions and forest ecosystem types, is needed. Technically, this could be based on aggregation national forest inventories or European-wide sampling scheme combined with remote sensing data and distinct forest types or categories.  相似文献   

6.
Carbon (C) and nitrogen (N) play an important role in the restoration of ecosystem functions of reclaimed mine soils (RMSs). Postreclamation land use in RMSs affects soil C and N pools and fluxes. We compared the effects of 28-yr-old postreclamation land uses (forest, hay, and pasture) on selected chemical properties of soil, and C and N pools in reference to undisturbed forest and moderately disturbed agricultural land use in southeastern Ohio. The electrical conductivity was higher in RMSs under hay than that in pasture and forest land uses. The RMSs under pasture, hay, and forest had moderately acidic, neutral to slightly alkaline, and slightly alkaline pH, respectively. In the 0- to 5-cm soil depth, soil organic C (SOC) was higher in RMSs under pasture by 99% and under hay by 52% over that under forest. Similarly, total nitrogen (TN) was higher in RMSs under pasture by 98% and under hay by 43% over that under forest. Aggregate-associated SOC concentration in the 0- to 5-cm depth decreased in the order of RMSs under hay > RMSs under pasture > RMSs under forest. The SOC pools in the 0- to 30-cm depth decreased in the order of RMSs under hay = RMSs under pasture > RMSs under forest = undisturbed forest = agriculture land use. Nitrogen pools followed a similar trend. Hay land use has a better potential for improving soil quality in RMSs by enhancing chemical properties and SOC and TN pools than forest or pasture land uses.  相似文献   

7.
Recent studies have observed enhanced degradation of methyl isothiocyanate (MITC) from repeated fumigation in agricultural soils. Little is known about fumigant degradation in forest and nursery soils. This study was conducted to determine degradation rates of MITC and chloropicrin (CP) in two forest soils and the impacts of nursery management on degradation of MITC and CP. The half-life values of MITC and CP were evaluated in the laboratory under isothermal conditions (22 +/- 2 degrees C). Three rates representing 0.5x, 1x, and 2x field application rates for each fumigant were used in laboratory incubations. Effect of microbial degradation was determined by conducting incubations with both fresh and sterilized soils. Soil moisture effects were also studied. There was no difference in MITC or CP degradation between fumigated and nonfumigated forest nursery soils. Soil sterilization and high soil moisture content (15% by wt.) reduced MITC and CP degradation. The degradation rates of MITC and CP varied with factors such as nursery history, fumigant application rates, and freshness of tested soils.  相似文献   

8.
9.
The boreal forest is subject to natural and anthropogenic disturbances, but the production of greenhouse gases as a result of flooding for hydroelectric power generation has received little attention. It was hypothesized that flooded soil would result in greater CO(2) and CH(4) emissions and carbon (C) fractionation compared with non-flooded soil. To evaluate this hypothesis, soil C and nitrogen (N) dynamics, CO(2) and CH(4) mean production rates, and (13)C fractionation in laboratory incubations at 14 and 21 degrees C under non-flooded and flooded conditions and its effect on labile and recalcitrant C sources were determined. A ferro-humic Podzol was collected at three different sites at the Experimental Lakes Area, Canada, with a high (19,834 g C m(-2)), medium (18,066 g C m(-2)), and low (11,060 g C m(-2)) soil organic C (SOC) stock. Soil organic C and total N stocks (g m(-2)) and concentrations (g kg(-1)) were significantly different (p < 0.05) among soil horizons within each of the three sites. Stable isotope analysis showed a significant enrichment in delta(13)C and delta(15)N with depth and an enrichment in delta(13)C and delta(15)N with decreasing SOC and N concentration. The mean CO(2) and CH(4) production rates were greatest in soil horizons with the highest SOC stock and were significantly higher at 21 degrees C and in flooded treatments. The delta(13)C of the evolved CO(2) (delta(13)C-CO(2)) became significantly enriched with time during decomposition, and the greatest degree of fractionation occurred in the organic Litter, Fungal, and Humic forest soil horizons and in soil with a high SOC stock compared with the mineral horizon and soil with a lower SOC stock. The delta(13)C-CO(2) was significantly depleted in flooded treatments compared with non-flooded treatments.  相似文献   

10.
The effects of expression of Cry endotoxin by Bt corn (transgenic corn engineered to express Bacillus thuringiensis toxin) on soil microbial community structure were assessed in a growth chamber experiment. Two lines of transgenic corn expressing different Cry endotoxins were compared with their respective non-transgenic isolines in three soil types with differing textures. Phospholipid fatty acid (PLFA) profiles from bulk soil and community-level physiological profiles (CLPP) from the rhizosphere community were used to assess community structure. Differences in PLFA profiles due to soil type were significant, accounting for 73% of the total variability in the dataset. Differences in bacterial and fungal CLPP profiles due to soil type were statistically significant, but probably not biologically important, accounting for 6.3 and 3.8% of the total variability, respectively. Neither expression of Cry endotoxin nor corn line had a significant effect on microbial profiles, except in the high-clay soil where both factors significantly affected bacterial CLPP profiles (accounting for 6.6 and 6.1% of the variability in that soil, respectively). Expression of Cry endotoxin also significantly reduced the presence of eukaryotic PLFA biomarker in bulk soils, although it is unclear which groups of eukaryotes were affected. We conclude that the effects of transgenic Bt corn in this short-term experiment are small, and longer-term investigations are necessary.  相似文献   

11.
Ecosystem-based management (EBM) of forests is gaining acceptance for its focus on the maintenance of the long-term integrity of ecosystem processes, but climate change challenges this view because of its impacts on these very processes. We have therefore evaluated the robustness of EBM to projected climate change, considering the role of climate on forest growth and fire regime in a boreal forest of eastern Canada. A climate sensitive growth index model was calibrated for three commercial species and used to project the evolution of merchantable volume for two climate scenarios (B1 and A2) under conventional and EBM strategies. Current burn rate and burn rates under future climate scenarios were also considered. Under the most extreme projected climate scenario, the periodic timber supply could be reduced by up to 79% through direct (growth reduction) and indirect (fire) effects. However, ecological indicators show that EBM is a more robust forest management strategy than conventional one demonstrating its adaptation potential to climate change at least in the short term.  相似文献   

12.
The use of composted manures and of legumes in crop rotations may control the quality and quantity of soil organic matter and may affect nutrient retention and recycling. We studied soil organic C and N stocks and N mineralization in organically and conventionally managed dryland arable soils. We selected 13 extensive organic fields managed organically for 10 yr or more as well as adjacent fields managed conventionally. Organic farmers applied composted manures ranging from 0 to 1380 kg C ha yr and incorporated legumes in crop rotations. In contrast, conventional farmers applied fresh manures combined with slurries and/or mineral fertilizers ranging from 200 to 1900 kg C ha yr and practiced a cereal monoculture. Despite the fact that the application of organic C was similar in both farming systems, organically managed soils showed higher C and similar N content and lower bulk density than conventionally managed soils. Moreover, organic C stocks responded to the inputs of organic C in manures and to the presence of legumes only in organically managed soils. In contrast, stocks of organic N increased with the inputs of N or C in both farming systems. In organically managed soils, organic N stocks were less mineralizable than in conventional soils. However, N mineralization in organic soils was sensitive to the N fixation rates of legumes and to application rate and C/N ratio of the organic fertilizers.  相似文献   

13.
Application of biochars to soils may stabilize soil organic matter and sequester carbon (C). The objectives of our research were to study in vitro C mineralization kinetics of various biochars in comparison with wheat straw in three soils and to study their contribution to C stabilization. Three soils (Oxisol, Alfisol topsoil, and Alfisol subsoil) were incubated at 25°C with wheat straw, charcoal, hydrothermal carbonization coal (HTC), low-temperature conversion coal (LTC), and a control (natural organic matter). Carbon mineralization was analyzed by alkali absorption of CO released at regular intervals over 365 d. Soil samples taken after 5 and 365 d of incubation were analyzed for soluble organic C and inorganic N. Chemical characterization of biochars and straw for C and N bonds was performed with Fourier transformation spectroscopy and with the N fractionation method, respectively. The LTC treatment contained more N in the heterocyclic-bound N fraction as compared with the biochars and straw. Charcoal was highly carbonized when compared with the HTC and LTC. The results show higher C mineralization and a lower half-life of straw-C compared with biochars. Among biochars, HTC showed some C mineralization when compared with charcoal and LTC over 365 d. Carbon mineralization rates were different in the three soils. The half-life of charcoal-C was higher in the Oxisol than in the Alfisol topsoil and subsoil, possibly due to high Fe-oxides in the Oxisol. The LTC-C had a higher half-life, possibly due to N unavailability. We conclude that biochar stabilization can be influenced by soil type.  相似文献   

14.
We study the optimal hardwood tree planting decision on reclaimed surface coal mines in the Appalachian region using a mine operator-focused, expected cost model that recognizes costs of preparing the site for tree planting, unit costs of planting seedlings, and opportunity costs of reforestation treatments and the performance bond. We also consider the possibility of failed initial attempts by incorporating the probability of reforestation success, based on empirical seedling ,survival rates and regulated tree survival standards, as well as fixed and unit costs of returning for additional planting. Optimal planting levels from 319 to 780 trees per acre and expected costs from $1049 to $2338 were found using simulations over a range of unit planting costs, fixed costs of replanting, tree survival standards, and interest rates. Further simulations compared optimal planting across un-weathered gray sandstone and weathered brown sandstone substrate materials, finding gray sandstone to be associated with lower expected costs. We conclude that optimal planting density and expected reforestation cost are sensitive to economic parameters, regulations, and planting substrate materials; and those policies influencing these factors may have substantial impact on reforestation outcomes and the choice of post-mining land use by mine operators. Our study provides a framework for understanding forest reclamation decisions that incorporates incentives faced by the mine operators who develop and implement the plans for mine reclamation, including forestry.  相似文献   

15.
The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use.  相似文献   

16.
The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse conditions with those from field trials. Plants were grown in contrasting sandy loam and clay loam soils, half were sprayed with a pyrethroid insecticide (deltamethrin) and soil samples taken at the five-leaf stage, flowering, and maturity. The main effect on all measured parameters was that of soil type and there were no effects of Bt trait or insecticide on plant growth. The Bt trait resulted in more soil nematodes and protozoa (amoebae), whereas insecticide application increased plant Bt concentration and altered nematode community structure. The only significant effects on soil microbial community structure, microarthropods, and larvae of a nontarget root-feeding Dipteran, were due to soil type and plant growth stage. The results indicate that, although there were statistically significant effects of the Bt trait on soil populations, they were small. The relative magnitude of the effect could best be judged by comparison with the insecticide treatment, which was representative of current best practice. The Bt trait had no greater effect than the insecticide treatment. Results from this glasshouse experiment were in broad agreement with conclusions from field experiments using the same plant material grown in the same soils.  相似文献   

17.
The effect of soil fumigation on N mineralization and nitrification needs to be better quantified to optimize N fertilizer advice and predict NO(-)(3) concentrations in crops and NO(-)(3) leaching risks. Seven soils representing a range in soil texture and organic matter contents were fumigated with Cyanamid DD 95 (a mixture of 1,3-dichloropropane and 1,3-dichloropropene). After removal of the fumigant, the fumigated soils and unfumigated controls were incubated for 20 wk and N mineralization and nitrification were monitored by destructive sampling. The average short-term N mineralization rates (k(s)) were significantly larger in the fumigated than in the unfumigated soils (P = 0.025), but the differences in k(s) between fumigated and unfumigated soils could not be related to soil properties. The average long-term N mineralization rates (k(l)) were slightly larger in the fumigated soils but the difference with the unfumigated soils was not significant. Again, the differences in k(l) values could not be related to soil properties. Nitrification was inhibited completely for at least 3 wk in all soils, and an effect on nitrification could be observed up to 17 wk in one soil. An S-shaped function was fitted to the nitrification data corrected for N mineralization, and both the rate constant (gamma) and the time at which maximum nitrification was reached (t(max)) were strongly correlated to soil pH. However, since no correlations were found between the effect of fumigation on N mineralization and soil properties, taking into account the effects of fumigation in fertilizer advice and in the prediction of NO(-)(3) leaching risks will need further research.  相似文献   

18.
Biogeochemical transformations of redox-sensitive chemicals in soils can be strongly transport-controlled and localized. This was tested through experiments on chromium diffusion and reduction in soil aggregates that were exposed to chromate solutions. Reduction of soluble Cr(VI) to insoluble Cr(II) occurred only within the surface layer of aggregates with higher available organic carbon and higher microbial respiration. Sharply terminated Cr diffusion fronts develop when the reduction rate increases rapidly with depth. The final state of such aggregates consists of a Cr-contaminated exterior, and an uncontaminated core, each having different microbial community compositions and activity. Microbial activity was significantly higher in the more reducing soils, while total microbial biomass was similar in all of the soils. The small fraction of Cr(VI) remaining unreduced resides along external surfaces of aggregates, leaving it potentially available to future transport down the soil profile. Using the Thiele modulus, Cr(VI) reduction in soil aggregates is shown to be diffusion rate- and reaction rate-limited in anaerobic and aerobic aggregates, respectively. Thus, spatially resolved chemical and microbiological measurements are necessary within anaerobic soil aggregates to characterize and predict the fate of Cr contamination. Typical methods of soil sampling and analyses that average over redox gradients within aggregates can erase important biogeochemical spatial relations necessary for understanding these environments.  相似文献   

19.
A landscape may be envisioned as a space partitioned by a number of ecosystem types, and so it conforms to a neo-Clementsian model of succession. A corollary is that intermediate disturbance rates should maximize landscape (beta) diversity. This was confirmed using eight boreal forest landscapes in northwestern Ontario, Canada, where intermediate rates of forest fire were associated with highest landscape diversity. Because current measures of evenness subsume a richness measure, it is not, as yet, feasible to assess the relative contributions of evenness and richness to biological diversity, and thus it was not possible to determine the roles of numbers of habitat types and relative amounts of habitat types in the above situation. Both theory and observations suggest that forest fire control in fire-prone landscapes increases landscape diversity, but that it is lowered by fire control in landscapes of intermediate to low diversity.  相似文献   

20.
Models of carbon storage in softwood and hardwood trees and forest soils and its emission from timber products and waste are developed and integrated with data on storage benefits to yield estimates of the value of the net carbon flux generated by afforestation. The long-term nature of the processes under consideration and the impact of varying the discount rate are explicitly incorporated within the model. A geographical information system (GIS) is used to apply carbon sequestration models to data on tree growth and soil type distribution for a large study area (the entire country of Wales). The major findings are: (1) all three elements under analysis (carbon sequestration in livewood, release from different products and waste, and storage or emission from soils) play a vital role in determining overall carbon flux; (2) woodland management has a substantial impact upon carbon storage in livewood however the choice of discount rate exerts the largest overall influence upon estimated carbon flux values; (3) timber growth rates (yield class) also have a major impact upon values; (4) tree species does affect storage values, however this is less important than the other factors listed above; (5) non-peat soils generally sequester relatively low levels of carbon. Planting upon peat soils can result in very substantial emissions of carbon which exceed the level of storage in livewood.The GIS is used to produce valuation maps which can be readily incorporated within cost-benefit analyses regarding optimal locations for conversion of land into forestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号