首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

2.
Effects of microwave pretreatment on waste activated sludge (WAS) in mesophilic semicontinuous digesters with acclimatized inoculum at solids retention times (SRTs) of 5, 10, and 20 days are presented. Batch digesters determined optimum microwave temperature, intensity, WAS concentration, and percentage of WAS pretreated for highest WAS solubilization (soluble to total chemical oxygen demand ratio [SCOD:TCOD]) and biogas production. Pretreatment results indicated the potential to damage floc structure and release 4.2-, 4.5-, and 3.6-fold higher soluble proteins, sugars, and SCOD:TCODs compared with controls, with nucleic acid release. Pretreatment increased dewaterability and bioavailability of WAS with 20% higher biogas production compared with controls in batch digestion. In semicontinuous digesters, relative (to control) improvements in removals dramatically increased, as SRT was shortened from 20 to 10 to 5 days, with 23 and 26% higher volatile solids removals for WAS pretreated to 96 degrees C by microwave and conventional heating at a 5-day SRT.  相似文献   

3.
Performance and stability of two-stage anaerobic digestion.   总被引:1,自引:0,他引:1  
The stability, capacity, and solids destruction efficiency of single versus two-stage anaerobic digestion was studied in bench-scale reactors using combined waste activated and primary sludge. Laboratory staged mesophilic digesters showed an improved volatile solids and volatile suspended solids destruction efficiency over a single-stage system (at the same total solids retention time [SRT]) of approximately 3.2 and 5.8 percentage points, respectively. To quantify stability and capacity, a new digester monitoring method was introduced that measured the digester maximum acetate utilization capacity, V(max,ac), and was used to investigate the potential for digester instability at different transient loadings. The ratio of the V(max,ac) value to the estimated acetate production rate for a given digester loading was termed the acetate capacity number (ACN). Values greater than 1.0 indicate excess acetate utilization capacity. The first stage of the laboratory two-stage mesophilic system (10-day SRT for each stage) had an ACN number of 1.3 compared with a value of 1.8 for the single-stage 20-day SRT digester. Thus, while a staged mesophilic system can improve solids destruction efficiency, it demonstrates a lower capacity for metabolizing highly variable loads.  相似文献   

4.
Recuperative thickening of anaerobic digester sludge (thickening with solids return) yields increased digester capacity. Common thickening methods cause oxygen exposure to the digester sludge. This study evaluated the effects of various levels of oxygen exposure on the acetoclastic methanogens. Gravity belt thickening had no detrimental effect on the acetoclastic activity. From a 7-day batch test with continuous oxygen exposure of digester sludge, a 12% loss in acetoclastic activity was predicted for a digester with a 20-day solids retention time (SRT) and 100% recycle with recuperative thickening via dissolved air flotation thickening. However, a greater loss (27%) was found from a long-term, bench-scale digester operated under similar conditions. This loss did not affect the digester performance, as measured by volatile solids destruction. This research suggests that recuperative thickening may not affect digester performance at a long SRT with constant operation, but may change the reserve capacity of the anaerobic community.  相似文献   

5.
A new way of generating Class A sludge using microwaves was evaluated through a series of laboratory-scale experiments. Microwaves provide rapid and uniform heating throughout the material. Other benefits of microwave treatment include instant and accurate control and selective and concentrated heating on materials, such as sludge, that have a high dielectric loss factor. Sludge was irradiated with 2450-MHz microwaves, and fecal coliforms were counted. Fecal coliforms were not detected at 65 degrees C for primary sludge and anaerobic digester sludge and at 85 degrees C for waste activated sludge when sludge was irradiated with 2450-MHz microwaves. During the bench-scale anaerobic digester operation, the highest average log reduction of fecal coliforms was achieved by the anaerobic digester fed with microwave-pretreated sludge (> or = 2.66 log removal). The anaerobic digester fed with microwave-irradiated sludge was more efficient in inactivation of fecal coliforms than the other two digesters fed with raw sludge and externally heated sludge, respectively. It took more than three hydraulic retention times for a bench-scale mesophilic anaerobic digester to meet Class A sludge requirements after feeding microwave-irradiated sludge. Class A sludge can be produced consistently with a continuously fed mesophilic anaerobic digester if sludge is pretreated with microwaves to reach 65 degrees C.  相似文献   

6.
Codigestion of organic wastes is a technology that is increasingly being applied for simultaneous treatment of several solid and liquid organic wastes. The main advantages of this technology are improved methane yield because of the supply of additional nutrients from the codigestates and more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. Many municipal wastewater treatment plants (WWTPs) in industrialized countries currently process wastewater sludge in large digesters. Codigestion of organic wastes with municipal wastewater sludge can increase digester gas production and provide savings in the overall energy costs of plant operations. Methane recovery also helps to reduce the emission of greenhouse gases to the atmosphere. The goal of this literature survey was to summarize the research conducted in the last four years on anaerobic codigestion to identify applications of codigestion at WWTPs. Because the solids content in municipal wastewater sludge is low, this survey only focuses on codigestion processes operated at relative low solids content (slurry mode). Semi-solid or solid codigestion processes were not included. Municipal wastewater sludge, the organic fraction of municipal solid waste, and cattle manure (CAM) are the main wastes most often used in codigestion processes. Wastes that are codigested with these main wastes are wood wastes, industrial organic wastes, and farm wastes. These are referred to in this survey as codigestates. The literature provides many laboratory studies (batch assays and bench-scale digesters) that assess the digestibility of codigestates and evaluate the performance and monitoring of codigestion, inhibition of digestion by codigestates, the design of the process (e.g., single-stage or two-stage processes), and the operation temperature (e.g., mesophilic or thermophilic). Only a few reports on pilot- and full-scale studies were found. These evaluate general process performance and pretreatment of codigestates, energy production, and treatment costs.  相似文献   

7.
Batch anaerobic digesters were used to stabilize microwave (MW)-irradiated waste activated sludge (WAS). A low temperature range (50-96 degrees C) MW irradiation was applied. Effects of pretreatment temperature (T) and intensity (I), concentration (C) and percentage of sludge pretreated (PT) were investigated in a multilevel factorial statistical design containing 54 mesophilic batch reactors by monitoring cumulative biogas production (CBP). Variance analysis (ANOVA) determined that the most important factors affecting WAS solubilization were temperature, intensity, and sludge concentration. Improvements in CBP from WAS were significantly affected by sludge percentage pretreated, temperature, and concentration. Pretreatment resulted in 3.6 +/- 0.6 and 3.2 +/- 0.1 fold increases in soluble to total chemical oxygen demand (SCOD/TCOD) at high and low sludge concentrations, respectively. WAS, microwaved to 96 degrees C, produced the greatest improvement in CBP with 15 +/- 0.5 and 20 +/- 0.3% increases over controls after 19 d of digestion at low and high WAS concentrations. Dewaterability of microwaved sludge was enhanced after anaerobic digestion.  相似文献   

8.
Four combinations of litter and carcasses from broiler chickens were examined utilizing a thermophilic, stirred-tank digester of demonstration size of approximately 10,000 gal. Under computed optimal loading rates, litter with paper bedding had the highest daily production of methane over an 8-day retention period. The greatest methane production per lb of volatile solids was achieved over 10 days with litter and paper bedding combined with carcasses. This research found that sufficient poultry litter is generated within 20 mi (32 km) of Moorefield, WV, to support a commercial-sized digester operation. However, anaerobic digestion of poultry waste cannot be financially supported by methane production alone. To be financially viable, anaerobic digestion requires a disposal fee for poultry waste and/or the sale of the digested solid effluent as an organic fertilizer to retail markets.  相似文献   

9.
ABSTRACT

Four combinations of litter and carcasses from broiler chickens were examined utilizing a thermophilic, stirred-tank digester of demonstration size of approximately 10,000 gal. Under computed optimal loading rates, litter with paper bedding had the highest daily production of methane over an 8-day retention period. The greatest methane production per lb of volatile solids was achieved over 10 days with litter and paper bedding combined with carcasses. This research found that sufficient poultry litter is generated within 20 mi (32 km) of Moorefield, WV, to support a commercial-sized digester operation. However, anaerobic digestion of poultry waste cannot be financially supported by methane production alone. To be financially viable, anaerobic digestion requires a disposal fee for poultry waste and/or the sale of the digested solid effluent as an organic fertilizer to retail markets.  相似文献   

10.
As Class B biosolids land application has become less acceptable to many local jurisdictions, low-cost processes to achieve Class A standards have become more popular. Prominent among these low-cost processes is thermophilic anaerobic digestion. As a result, thermophilic anaerobic digestion is now a popular topic in wastewater treatment literature, but quantifiable methods for selecting a particular thermophilic process have not been offered. To provide for this need, an empirical model was developed from data collected in thermophilic anaerobic digestion studies conducted using East Bay Municipal Utility District's (Oakland, California) primary and waste activated sludge to feed both bench- and full-scale digesters. The model predicts at which thermophilic temperature and mean cell residence time (MCRT) one process will outperform or equal another, with respect to fecal coliform reduction. The different disinfection efficiencies in the different thermophilic processes might be explained by the presence or absence of high volatile acid and/or un-ionized ammonia levels in the processes' digested sludges. Data from these studies also show an apparent relationship between increased thermophilic temperatures and volatile solids destruction, and between increased temperatures and specific volatile acids production, for digesters operating at a 13-day MCRT and higher, but not for digesters operating at a 2-day MCRT.  相似文献   

11.
Methanosarcina species with a high maximum specific growth rate (mumax) and high half-saturation coefficient (KS) and Methanosaeta species with a low mumax and low KS are the only known aceticlastic methanogens. Because of Methanosaeta's low KS, the low acetate concentrations in conventional, mesophilic anaerobic digestion yield Methanosaeta dominance. However, Methanosarcina absorbs increases in acetate more efficiently and thus promotes more stable digestion. This paper tests the hypothesis that decreasing digester feeding frequencies can increase Methanosarcina predominance. Two acetate-fed reactors were established at a 17-day solids retention time. One reactor was fed hourly, and one was fed once daily. Microscopic and molecular methods were used to verify that the hourly fed reactor enriched for Methanosaeta, while the daily fed reactor enriched for Methanosarcina. Growth and substrate-use kinetics were measured for each reactor. A digester overload condition was simulated, and the Methanosarcina-enriched reactor was found to perform better than the Methanosaeta-enriched reactor. These findings indicate that Methanosarcina dominance can be achieved with infrequent feedings, leading to more stable digestion.  相似文献   

12.
Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially negative effect on digestion kinetics. The use of multistage digesters, especially with small front-end reactors, may be advantageous in both "process" kinetics and "biological reaction" kinetics for sludge digestion.  相似文献   

13.
Eleven dewatered sludge cakes collected from anaerobic digesters at different treatment plants were evaluated for the amount, type, and pattern of odorous gas production. All but one of the sludge cakes were from mesophilic anaerobic digesters. One was from a thermophilic digester. The pattern and quantities of sulfur gases were found to be unique for each of the samples with regard to the products produced, magnitude, and subsequent decline. The main odor-causing chemicals were volatile sulfur compounds, which included hydrogen sulfide, methanethiol, and dimethyl sulfide. Volatile sulfur compound production peaked in 3 to 8 days and then declined. The decline was a result of conversion of organic sulfur compounds to sulfide. In one side-by-side test, a high-solids centrifuge cake generated more odorous compounds than the low-solids centrifuge cake. The data show that anaerobic digestion does not eliminate the odor potential of anaerobically digested dewatered cakes.  相似文献   

14.
Increased anaerobic selector hydraulic retention times (HRTs) in a high-purity oxygen activated sludge process resulted in an increase in soluble orthophosphate release and biodegradable chemical oxygen demand removal, confirming that enhanced biological phosphorus removal occurs at aeration solids retention times (SRTs) below 1.7 days. Under operating conditions that included biological foam trapping and recycling, an anaerobic selector with HRTs higher than 55 minutes resulted in a decrease in filament counts and effective foam control. Effective norcardioform control is achieved through the combination of metabolic selective pressure and increased soluble organic substrate removal in the anaerobic selector and low aeration SRT.  相似文献   

15.
Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2)-4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2)-3.59 x 10(-2) day(-1)). It is of high significance that experiments with anaerobic sludge of different origin (US and Europe) showed that degradation of DEHP occurs under methanogenic conditions. Accumulation of high levels of DEHP (more than 60 mg/l) in the anaerobic digester has a negative effect on DBP and DEHP removal rates as well as on the biogas production.  相似文献   

16.
Influence of ultrasonication on anaerobic bioconversion of sludge.   总被引:1,自引:0,他引:1  
The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.  相似文献   

17.
ABSTRACT

Development of digesters with an external zeolite column facilitates the convenient removal of the zeolite with TAN, without disturbing the continuous anaerobic digestion process. A digester with an inside zeolite bed (In-Zeo) and digester without adding zeolite (No-Zeo) were employed to compare the process performance with digester with external zeolite column (EX-Zeo). The cumulative, CH4 yields were 5% and 15% greater in the EX-Zeo, and the In-Zeo digesters respectively compared to the No-Zeo digesters. Also, the % VS reduction was 49%, 55% and 41%, respectively in the Ex-Zeo, In-Zeo and No-Zeo digesters. The results indicated that treatment with 7% zeolite during anaerobic digestion has the potential to improve biodegradation of swine manure. The addition of zeolite appeared to reduce TAN from the digestate, thereby enhancing the CH4 yield. Zeolite could be used either internally or externally to enhance CH4 production through anaerobic digestion of swine manure.  相似文献   

18.
Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.  相似文献   

19.
High-solids anaerobic digestion can consistently achieve 55 to 60% volatile solids destruction after thermal hydrolysis pretreatment, which reduces its viscosity and increases the fraction of soluble organic matter. For feed sludge with total solids concentrations between 6.8 and 8.2%, the process is stable at hydraulic retention times of 9 to 12 days, significantly increasing the treatment capacity of existing digesters or, in treatment plants without spare capacity, helping to postpone, reduce, or even avoid costly infrastructure investments. Process stability is related to the high concentration of soluble organic matter in the digesters. High-solids temperature-phased digestion appears to be superior to high-solids mesophilic digestion, with respect to process flexibility and stability, biosolids stabilization, and biogas generation, although ammonia inhibition may have occurred. Implementation of high-solids digestion could significantly reduce operation and maintenance costs of solids-handling operations.  相似文献   

20.
A combination of bench- and full-scale studies were conducted to determine the effectiveness of high-intensity mechanical shear in an internal recycle loop to enhance mesophilic anaerobic digestion and the implications of this process for routine operations of a digestion system. During short-term batch digestion (56 hours), a 46% increase in biogas production was observed. However, it was found that the degree of digestion enhancement was sludge-specific, with increases in volatile solids destruction ranging from 16.6 to 110%. A full-scale demonstration showed increased total and volatile solids destruction of 22 and 21% for the primary digester and 17.2 and 11% for the secondary digester, respectively. The data also suggest that increased protein degradation is one of the major mechanisms associated with the observed increases in volatile solids destruction. The full-scale demonstration also determined that shear enhanced digestion can be operated without process upset, based on volatile fatty acid profile and headspace biogas composition (methane and carbon dioxide). Dewatering properties, as measured by polymer demand, deteriorated in the primary digester, but there was improvement in the secondary digester. High-intensity shear does not appear to enhance pathogen reduction based on total and fecal coliform bacterial enumeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号