首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury-containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl2) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150 degrees C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer-Emmett-Teller (BET) surface area could adsorb more HgCl2 at room temperature. The equilibrium adsorptive capacity of HgCl2 for WPAC measured in this study was 1.49 x 10(-1) mg HgCl2/g PAC at 25 degrees C with an initial HgCI2 concentration of 25 microg/m3. With the increase of adsorption temperature < or = 150 degrees C, the equilibrium adsorptive capacity of HgCl2 for WPAC was decreased to 1.34 x 10(-1) mg HgCl2/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl2 because of the reactions between sulfur and Hg2+ at 150 degrees C. It was demonstrated that the mechanisms for adsorbing HgCl2 onto WPAC were physical adsorption and chemisorption at 25 and 150 degrees C, respectively. Experimental results also indicated that the apparent overall driving force model appeared to have the good correlation with correlation coefficients (r) > 0.998 for HgCl2 adsorption at 25 and 150 degrees C. Moreover, the equilibrium adsorptive capacity of HgCl2 for virgin WPAC was similar to that for CPAC at 25 degrees C, whereas it was slightly higher for sulfurized WPAC than for CPAC at 150 degrees C.  相似文献   

2.
This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl2 was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl2 were 1.75, 0.688, and 0.230 mg of HgCl2 per gram of powdered activated carbon derived from carbon black at 30, 70, and 150 degrees C for 500 microg/m3 of HgCl2, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-Teller (BET) models were used to simulate the adsorption of HgCl2. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30 degrees C, whereas the Freundlich isotherm fit the experimental results better at 70 and 150 degrees C. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl2 by PAC-derived carbon black favored adsorption at various HgCl2, concentrations and temperatures.  相似文献   

3.
活性炭孔隙结构在其甲苯吸附中的作用   总被引:4,自引:0,他引:4  
选用4种商用活性炭(AC),利用氮气绝热吸附、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)测试了活性炭的物化性质。以甲苯为吸附质,在温度为298.15 K下进行了静态和动态吸附实验,研究了活性炭孔结构对其吸附性能、吸附行为、表面覆盖率和吸附能的影响。结果表明:活性炭的比表面积和孔容是其吸附性能主要影响因素,孔径在0.8~2.4 nm之间的孔容和甲苯吸附量之间存在较好的线性关系,且线性斜率随甲苯浓度增加而变大。甲苯吸附行为符合Langmuir吸附等温模型和准一阶动力学方程式。活性炭孔结构是甲苯吸附速率的主要制约因素。在甲苯快速吸附阶段,微孔为吸附速率主要制约因素,在甲苯颗粒内扩散阶段,微孔和表面孔为吸附速率的主要制约因素,在吸附末尾阶段,中孔和大孔为吸附速率的主要制约因素。4种活性积炭对甲苯的吸附能随其比表面变大而变大。  相似文献   

4.
Batch adsorption experiments were carried out to study the adsorptive removal and diffusion mechanism of para-chlorophenol (p-CP) onto Calgon Filtrasorb 400 (F400) activated carbon. The external mass transfer resistance is negligible in the adsorption process carried out under different conditions in batch operation. Intraparticle diffusion model plots were used to correlate the batch p-CP adsorption data; three distinct linear sections were obtained for every batch operation. The textural properties of F400 activated carbon showed that it has a large portion of supermicropores, which is comparable to the size of the p-CP molecules. Due to the stronger interactions between p-CP molecules and F400 micropores, p-CP molecules predominantly diffused and occupied active sites in micropore region by hopping mechanism, and eventually followed by a slow filling of mesopores and micropores. This hypothesis is proven by the excellent agreement of the intraparticle diffusion model plots and the textural properties of F400 activated carbon.  相似文献   

5.
Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.  相似文献   

6.
Abstract

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl2 was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl2 were 1.75, 0.688, and 0.230 mg of HgCl2 per gram of powdered activated carbon derived from carbon black at 30, 70, and 150 °C for 500 µg/m3 of HgCl2, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer–Emmett–Teller (BET) models were used to simulate the adsorption of HgCl2. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30 °C, whereas the Freundlich isotherm fit the experimental results better at 70 and 150 °C. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl2 by PAC-derived carbon black favored adsorption at various HgCl2 concentrations and temperatures.  相似文献   

7.
研究了载硫温度、硫炭比(简称S/C),吸附温度等因素对载硫活性炭的硫含量、脱汞能力以及硫损失的影响,探讨载硫活性炭制备的工艺条件优化。结果表明,不同载硫温度下制备的载硫活性炭的气态Hg0吸附能力远强于原料活性炭;载硫温度不同时,负载到活性炭孔隙或表面上的硫的形态不同,导致了脱汞能力的差异,较合适的载硫温度为350℃;S/C为5%(质量分数,下同)时,随着吸附温度的升高,载硫活性炭的气态Hg0吸附量降低;在一定的载硫温度下,原料中S/C越高时,制备的载硫活性炭的硫含量越高、气态Hg0吸附能力越强,但其硫损失率也越高,从实际的使用效果来看,较合适的S/C为10%。  相似文献   

8.
孔结构和表面化学性质对活性炭吸附性能的影响   总被引:1,自引:1,他引:0  
测定了室温下3种活性炭(GAC-C、GAC-P和GAC-T)对CO2、CH4和N2的吸附性能,并对颗粒活性炭孔结构和表面化学性质进行了表征,探讨了孔结构和表面化学性质对活性炭吸附性能的影响。结果表明:由于吸附机理、孔结构、表面含氧官能团和分子极性的差异,CO2、CH4和N2在活性炭上的饱和吸附量和吸附常数的关系为CO2>CH4>N2;CH4和N2的饱和吸附量主要受活性炭微孔孔容的影响,N2和CO2饱和吸附量的差异分别是由0.572~2.0 nm的微孔和0.4~6 nm的孔引起的;CH4吸附常数主要受较大中孔和大孔影响,N2吸附常数与微孔密切相关,大孔对CO2的吸附常数影响最大。  相似文献   

9.
Disposal of sewage sludge is an increasingly expensive and environmentally sensitive problem throughout the world. Preparation of activated carbon from sewage sludge offers an attractive re-use alternative to the traditional disposal routes. The objective of this research work was to compare anaerobically digested sewage sludge (DS) and undigested sewage sludge (US) as source materials in the preparation of activated carbons. Prior to the preparation the properties of the two types of sewage sludges were determined and compared. Subsequently the sludge samples were activated with 5 M ZnCl2 solution and thereafter pyrolysed at heating temperature of 650 degrees C for 2 h with the heating rate of 15 degrees C/min under a nitrogen atmosphere. The produced activated carbons were characterised by surface area and porosity analysis, CHN elemental composition and ash contents determination, and aqueous phase phenol adsorption tests. The results indicate that in comparison with the DS, the US had a higher carbon content and lower ash content, and accordingly yielded a better activated carbon with a higher BET surface area, pore volume, carbon content and phenol adsorption capacity.  相似文献   

10.
Abstract

Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury-containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl2) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150 °C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer–Emmett–Teller (BET) surface area could adsorb more HgCl2 at room temperature. The equilibrium adsorptive capacity of HgCl2 for WPAC measured in this study was 1.49 × 10?1 mg HgCl2/g PAC at 25 °C with an initial HgCl2 concentration of 25 μg/m3. With the increase of adsorption temperature ≤150 °C, the equilibrium adsorptive capacity of HgCl2 for WPAC was decreased to 1.×34 10?1 mg HgCl2/g PA≤C. Furthermore,WPAC with higher sulfur contents could adsorb even more HgCl2 because of the reactions between sulfur and Hg2+ at 150 °C. It was demonstrated that the mechanisms for adsorbing HgCl2 onto WPAC were physical adsorption and chemisorption at 25 and 150 °C, respectively. Experimental results also indicated that the apparent overall driving force model appeared to have the good correlation with correlation coefficients (r) >0.998 for HgCl2 adsorption at 25 and 150 °C. Moreover, the equilibrium adsorptive capacity of HgCl2 for virgin WPAC was similar to that for CPAC at 25 °C, whereas it was slightly higher for sulfurized WPAC than for CPAC at 150 °C.  相似文献   

11.
Valix M  Cheung WH  McKay G 《Chemosphere》2004,56(5):493-501
Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification.  相似文献   

12.
Modeling the formation of PCDD/F in solid waste incinerators   总被引:1,自引:0,他引:1  
Stanmore BR 《Chemosphere》2002,47(6):565-573
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) appear in unacceptable amounts in the gaseous emissions during the incineration of wastes containing significant quantities of chlorine and metals, such as MSW and medical waste. They are formed both in the gas phase at temperatures above 600 degrees C and on the surface of the solid phase (flyash) in the temperature range 400-225 degrees C. Both the precursor (from existing smaller chlorinated molecules) and de novo (from elemental carbon) routes are involved. An empirically derived global model for their de novo formation on flyash in MSW and medical waste incinerators has now been extended to include the precursor mechanism, and a gas phase formation component, with separate rate expressions for PCDD and PCDF. Homogeneous PCDD formation is governed by the concentration of chlorophenols and PCDF by that of chlorophenols and chlorobenzenes. The result is more complete system which distinguishes between the gas and solid phase contributions to the I-TEQ. An additional step for the adsorption of gaseous PCDD/F back onto the solid phase during cooling suggests this should be minimal in the gas ducts of an incinerator. The extended model has been tested against experimental data collected from a well-controlled pilot incinerator and commercial incinerators, and found to adequately describe the measured outputs. With the model it should be possible to predict the PCDD/F emissions from commercial incinerators, provided that the ash properties and the overall temperature-time profiles are known.  相似文献   

13.
Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30-90 min, 50% H2O(g),/50% N2), activated carbons with surface areas between 360 and 950 m2 g(-1) were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin-Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.  相似文献   

14.
The objective of this study is to optimize experimental conditions of sorbent preparation from sewage sludge using experimental design methodology. Series of carbonaceous sorbents have been prepared by chemical activation with sulfuric acid. The sorbents produced were characterized, and their properties (surface chemistry, porous and adsorptive properties) were analyzed as a function of the experimental conditions (impregnation ratio, activation temperature and time). Carbonaceous sorbents developed from sludge allow copper ion, phenol and dyes (Acid Red 18 and Basic Violet 4) to be removed from aqueous solution as well as VOC from gas phase. Indeed, according to experimental conditions, copper adsorption capacity varies from 77 to 83 mg g(-1), phenol adsorption capacity varies between 41 and 53 mg g(-1) and VOC adsorption capacities (acetone and toluene) range from 12 to 54 mg g(-1). Each response has been described by a second-order model that was found to be appropriate to predict most of the responses in every experimental region. The most influential factors on each experimental design response have been identified. Regions in which optimum values of each factor were achieved for preparation of activated carbons suitable for use in wastewater and gas treatments have been determined using response surfaces methodology. In order to have a high mass yield and to minimize the energetic cost of the process, the following optimal conditions, 1.5 g of H2SO4 g(-1) of sludge, 700 degrees C and 145 min are more appropriate for use of activated carbon from sludge in water and gas treatments.  相似文献   

15.
采用溴化钾、碘化钾和硫磺对竹活性炭掺杂改性,利用电感耦合等离子体发射光谱仪测定滤液中汞离子浓度,用除汞效率和吸附容量评价活性炭对溶液中汞离子的吸附性能,探讨其吸附机理。结果表明,掺杂改性明显提高了竹活性炭的除汞性能。原竹活性炭的除汞效率为78.6%,吸附容量为2.210 mg/g;经碘化钾、溴化钾和硫磺掺杂改性后的竹活性炭除汞效率分别为94.3%、93.8%和88.8%,吸附容量分别为2.830、2.813和2.663 mg/g;经溴化钾(碘化钾)和硫磺联合改性的竹活性炭对水溶液中汞离子的吸附性能性能又有提高,其中以先载硫后载溴化钾的方法除汞效果最好,除汞效率达96.6%,吸附容量为2.898 mg/g。  相似文献   

16.
Abstract

Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Meso-porous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micro-pores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.  相似文献   

17.
活性炭纤维及其在水处理中的应用   总被引:15,自引:1,他引:15  
介绍了活性炭纤维材料的发展历史、类别、结构性能、制备过程。活性炭纤维比普通活性炭性能优越,吸附量大,机械强度高,吸附、脱附速度快,正逐渐地被用于废水处理和饮用水的净化。其具体方法有常用的吸附法、电解法,以及尚在起步阶段的生物活性炭纤维法。  相似文献   

18.
ABSTRACT

In this study, the feasibility of preparing activated carbon from waste tea by physical activation using steam was investigated. The effects of activation temperature on yield and pore properties of the prepared activated carbon were studied. The yield decreased with increased activation temperature owing to the decomposition of cellulose and hemicellulose. The specific surface area and pore volume of the activated carbon were estimated using the Brunauer–Emmett–Teller method, Langmuir equation, and t-plot method. The specific surface area and micropore volume increased with increases in activation temperature, as additional volatile materials were released. The specific surface area significantly decreased at first but slightly increased with increasing activation time. The maximum specific surface area reached 995 m2/g at an activation temperature of 800 °C with a water flow rate of 0.075 g/min and a constant hold time of 0.5 hr. According to the nitrogen adsorption isotherms, micropores mainly developed when the activation temperature was below 800 °C, and both micropores and mesopores developed when it was above 800 °C. The results showed that activation temperature significantly affected micropore and mesopore volumes, as well as the specific surface area of the activated carbon. Overall, waste tea was found to be an attractive raw material for producing low-cost activated carbon.

Implications: Every year, a large amount of waste tea is generated after extraction. The high carbon content of waste tea showed that it can be used as raw material to produce activated carbon. This study investigated the feasibility of preparing activated carbon from waste tea by physical activation using steam. Temperature and time were found to have clear effects on pore properties. Our proposed method and raw material are more environmentally friendly and involve low cost. Furthermore, this offers a potential solution to the problems of waste tea disposal and low-cost activated carbon production.  相似文献   

19.
It has been known that dioxin-like polychlorinated biphenyls (DL-PCBs) are present in almost all types of environments worldwide. Activated carbon treatment has been expected for the removal of DL-PCBs because it is a simple and low-cost removal technology. In the present study, the physicochemical properties of activated carbon were investigated to identify the characteristics of 16 different types of activated carbon on adsorption properties for DL-PCBs. To accomplish this, micropore volume, and pore diameter were calculated by t-plot analysis and the mesopore volume was analyzed by the Barrett-Joyner-Halenda (BJH) method. In addition, the Brunauer-Emmett-Teller (BET) surface area, pH, metal elements, and surface acid functional groups were analyzed. Then, adsorption experiments using DL-PCB in hexane solution were conducted, and the relationship between adsorption and physicochemical properties of activated carbon was investigated. The results showed that activated carbons having a surface area of 700-1200 m2 g−1 and micropores with diameters of about 0.7-0.8 nm exhibited high activity for the adsorption of PCBs. The results also clearly showed that the mesopore volume of activated carbon influenced the adsorption rate and the equilibrium adsorption.  相似文献   

20.
新型水处理活性炭选型技术   总被引:8,自引:5,他引:3  
活性炭依其原料不同、生产工艺不同,而有不同的吸附性能.使用简易的活性炭选型方法,可以减少应用测试时的备选炭型,从而大大降低活性炭水处理技术的运行成本.以碘值、甲基蓝值、苯酚值和丹宁酸值4种吸附容量性能指标为依据的活性炭选型技术,可以有效地预测活性炭对于水中各种大小不同污染物的去除能力.BET测试结果证明了这4项指标数据对于活性炭孔径分布预测的准确性.2,4-二氯苯酚和腐殖酸等目标化合物的吸附容量实验结果也都验证了这4项指标的预测功用,说明这种简便的活性炭选型技术有着广泛的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号