首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Massive cyanobacterial water blooms and production of toxins (cyanotoxins) have become a worldwide problem. In this report, we present results of cyanotoxins analyses (peptide microcystins, alkaloid cylindrospermopsin) in the Czech Republic reservoirs using HPLC-PDA and ELISA. Our study suggests the occurrence of cylindrospermopsin in the Czech Republic for the first time (particularly, in water blooms containing Aphanizomenon klebahnii). We also discuss human health risks associated with microcystins in relation to the drinking water guideline value of 1.0 μg/l as recommended by the World Health Organization.  相似文献   

3.
The progressive degradation of surface freshwater quality due to the mass proliferation of toxic cyanobacterial blooms is of growing global concern. The occurrence of cyanobacterial blooms is not a new phenomenon. However, a global increase in the frequency, duration, and distribution of toxic cyanobacterial blooms could be observed in the past decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. The underlying causes and interrelations for this development have not been fully clarified. Nonetheless, all evidence points to the fact that mitigation of toxic cyanobacterial blooms will be a key challenge of the twenty-first century. This review addresses the underlying causes for the increased incidence of toxic cyanobacteria in temperate freshwater lakes and attempts to reveal possible reciprocities between bloom promoting factors. Selected approaches for the prevention of toxic cyanobacterial blooms as well as the mitigation of their potential negative impacts on humans will be presented.  相似文献   

4.
保水剂对番茄生长及水分利用效率的影响   总被引:11,自引:0,他引:11  
在砂与木屑复合基质中加入不同用量的保水剂,测定基质物理性状,并进行不同水分处理条件下番茄盆栽试验,以研究保水剂对番茄生长及水分利用效率的影响。结果表明:在每1 L基质分别加入1、2、4、8 g保水剂时,与对照(未加保水剂)相比,基质持水量分别增加16.35%、34.00%、61.29%和135.16%,容重分别降低3.61%、5.37%、9.42%和14.64%;在水分耗竭试验中,番茄萎蔫天数分别延长13.92%、22.79%、31.65%和45.5%,干物质量分别增加7.90%、21.60%、57.08%、179.50%,株高、叶片数、茎粗、鲜质量也都随保水剂用量的增加而明显增加;在基质相对水分质量分数分别为55%、70%、85%及100%4种处理下的番茄水分胁迫试验中,每1 L基质施用2 g保水剂时,与对照(未加保水剂)相比,水分利用效率分别提高29.93%、28.06%、14.36%、7.42%,株高、生物量也随水分胁迫程度加重而明显提高。  相似文献   

5.
Cyanobacterial bloom events in South Taihu Lake cause serious water quality problems and disturb aesthetic view of lake’s environment. In this study, correlations between cyanobacterial blooms and hydro-meteorological factors, including water quality, temperature and precipitation were investigated. Results demonstrated that South Taihu Lake was heavily affected by cyanobacteria and the proliferation of cyanobacteria due to variations in hydro-meteorological factors and water quality conditions. Water quality parameters, including COD, NH3-N, TN and TP improved significantly since 2008 even at an elevated cyanobacterial bloom situation. Correlation analyses have shown that the development of cyanobacterial density and chlorophyll a concentration was sensitive to a wider temperature variation. The optimum temperature for cyanobacteria was 20°C, while extremely low and high temperatures were found to suppress their growth. Moreover, unusual rainfall patterns were measured during the study period (2003–2009), which showed an adverse impact on cyanobacterial development. Findings from this study suggested that seasonal lake’s water quality monitoring; suitable treatment of cyanobacterial blooms and strict policy implementation can solve the water quality issues in highly eutrophic lakes like Taihu.  相似文献   

6.
主要研究利用浅层地下咸水灌溉冬小麦及土壤的安全性。试验采取3因素多水平组合设计,利用2.5~6.0g·L-1不同矿化度咸水对冬小麦进行灌溉。试验结果表明:冬小麦产量与咸水矿化度呈负相关关系r=-0.8542、r=-0.8457,与咸水灌溉量呈正相关关系r=0.7487、r=0.7401。利用小于4.0g·L-1咸水灌溉对土壤具有一定的脱盐作用,咸水矿化度为6.0g·L-1时土壤中的盐分积累达到85.5%。矿化度5.0g·L-1以上的咸水不宜直接灌溉农田,需经淡水与咸水调配后,矿化度在4.0g·L-1以下方可灌溉农田。  相似文献   

7.
A laboratory scale method is proposed in order to establish the advantages and disadvantages of reclaimed wastewater irrigation. Data on possible environmental impact (on groundwater and soils) of such irrigation practices are obtained by using lysimetric columns. At the same time it is possible to gather data about treated wastewater nutrient content.

Global results of percolating ions and vegatative growth on columns data are shown.  相似文献   

8.
Sanganur canal is the major open drainage system which has intricate linkage with storm water supply, domestic sewage and industrial effluent disposal. Water samples from various stations were collected and analysed for physicochemical parameters to assess the water quality of the Sanganur canal system. The study revealed that physicochemical parameters like pH, EC, TDS, DO, BOD, COD exceeded the permissible limit, clearly indicating the need of proper treatment of waste water before discharge into the Noyyal river.  相似文献   

9.
不同灌水条件下冬小麦的产量、水分利用与氮素利用特点   总被引:4,自引:0,他引:4  
了解不同灌水量(次数)处理条件下华北平原地区冬小麦的产量形成、氮素利用与水分利用的特点.在大田相同的施肥量与施肥方式、播前浇底墒水750m3.hm-2条件下,设置春季不灌水、春季灌2水(拔节+开花)和春季灌4水(起身+孕穗+开花+灌浆)3个水分处理(每次灌水定额750 m3.hm-2),分析了不同灌水量(次数)对植株氮素吸收利用、产量、土壤水分动态及利用效率的影响.冬小麦生育期内总耗水量和开花后耗水量均表现为随灌水次数(量)增加而增大的趋势,但耗土壤水量却随灌水增加而显著减少.春季灌水处理的经济产量均显著高于春季不灌水处理,但春灌2水和春灌4水之间无显著差异.水分利用效率(WUE)在春不灌水和春灌2水间无显著差异.但它们均显著高于春季灌4水处理.植株总吸氮量均随着灌水次数(灌水量)的增加而呈现出上升的趋势,春灌2水和灌4水处理的总吸氮量无显著差异,但它们均显著大于不灌水处理.氮素生理效率和氮素收获指数随灌水量(次数)增加略有下降,不同灌水处理之间并无显著差异.春灌2水处理相对春季不灌水处理显著提高了经济产量和植株总吸氮量,水分利用效率并没有明显下降;与春灌4水处理相比,经济产量和植株总吸氮量没有明显降低.但水分利用效率和水分边际效益显著提高.冬小麦节水栽培(春灌2水)有利于节水、氮素高效利用和高产的实现.  相似文献   

10.
Nanosized magnetite has emerged as an adsorbent of pollutants in water remediation. Nanoadsorbents include magnetic iron oxide and its modifiers/stabilizers, such as carbon, silica, clay, organic moieties (polymers, aminoacids, and fatty acids) and other inorganic oxides. This review is focused on the recent developments on the synthesis and use of magnetic nanoparticles and nanocomposites in the treatment of contaminated water. The emphasis is on the influence of the iron oxide modifiers on some properties of interest such as size, BET area, and magnetization. The characteristics of these nanomaterials are related to their ability to eliminate heavy metal ions and dyes from wastewater. Comparative analysis of the actual literature was performed aiming to present the magnetic material, its preparation methodology and performance in the elimination of the selected pollutants. Vast information has been properly summarized according to the materials, their properties and preferential affinity for selected contaminants. The mechanisms governing nanomaterial’s formation as well as the interactions with heavy metals and dyes have been carefully analyzed and associated to their efficiency.  相似文献   

11.
林锡奎  刘平  程炯 《生态环境》2006,15(2):439-442
互联网上有大量的水土保持信息资源,其内容极为丰富,但要从这大量的信息中快速获得所需要的信息却很困难。文章介绍了国内外主要水土保持信息资源的网址及有关水土保持电子论坛、水土保持专利等方面的信息交流与检索途径,并在此基础上对水土保持信息资源的应用及发展前景提出建议。  相似文献   

12.
天然沸石对番茄及土壤中铅的影响   总被引:1,自引:0,他引:1  
为探索沸石对轻度铅污染土壤的修复效果及农业安全生产可行性,利用盆栽试验研究了不同沸石添加量及不同沸石粒级等因素对不同生长时期番茄(Solanum lycopersicum)植株铅质量分数、累积量和土壤铅质量分数的影响。结果表明,添加天然沸石可提高土壤有效铅质量分数,不同程度地增加番茄地上部生物量,具有提高番茄茎叶铅质量分数及积累量、果实产量的趋势,也具有降低收获期根部铅质量分数及积累量的趋势。18g·kg-1是提高地上部生物量,抑制土壤铅污染、茎叶和根部铅积累的最佳沸石添加量,但有促进果实铅积累的趋势;沸石添加量为10g·kg-1则在提高土壤有效铅质量分数的同时可抑制果实铅的积累。中粒级沸石可抑制果实铅积累,大粒级为削减根部铅积累量促进茎叶铅积累的最佳沸石粒级,小粒级沸石则可抑制收获期茎叶铅的积累。  相似文献   

13.
规模化牛场废水灌溉对土壤水分和冬小麦产量品质的影响   总被引:2,自引:0,他引:2  
通过田间小区试验,设置不同的牛场废水灌溉次数,研究了冬小麦牛场废水灌溉过程中土壤水分和冬小麦产量品质的变化特征,结果表明,灌溉牛场废水土壤水分迁移和土壤贮水量与灌溉清水无显著差别,水质对土壤水分变化影响很小;冬小麦生育期内分别灌溉牛场废水2、3和4次与正常施肥灌溉施肥相比,冬小麦产量和灌溉水生产效率提高,分别提高了4.61%、6.48%、6.63%,4次牛场废水灌溉冬小麦产量略有下降,这说明灌溉牛场废水次数过多会对冬小麦造成一定的负面影响;牛场废水灌溉次数越多冬小麦籽粒中蛋白质质量分数越高,分别提高了2.50%、5.83%、8.03%,而全磷质量分数则有降低趋势。综合考虑,冬小麦生育期内牛场废水灌溉次数不应高于3次。  相似文献   

14.
在黄淮海平原 1hm2 小麦 -玉米轮作田块上 ,利用水量平衡模型对黄潮土的土壤水渗漏和硝态氮淋溶状况进行了定量研究。结果表明 ,黄潮土的土壤水渗漏和硝态氮淋溶状况非常严重 ,全耕作年土壤水渗漏量达到2 73 .9mm ,为灌溉水量的 60 .6% ;硝态氮淋溶达到 81.8kg·hm-2 ,为氮输入总量的 15 .7%。  相似文献   

15.
In some geographical areas human and animal populations are compelled to use salty water. In this study, tolerable and toxic salt concentrations were evaluated in rat, pig, and rabbit. Ninety Wistar rats weighing approximately 250 g were allocated to nine groups for study. For treatment, distilled water, 0.5, 1, 1.2, 1.4, 1.6, 1.8 or 2% salt (NaCl) concentrations were consumed by test groups, while the control group consumed Zanjan potable water. All animals were observed twice daily for mortality or evidence of morbidity. Serum sodium levels and plasma osmolarity were measured at the onset of experiment and 120 h later. Similar experimental conditions were employed in pig and rabbit. Rat tolerated 0.5, 1, and 1.2% NaCl concentrations in drinking water but higher concentrations were toxic and life threatening, accompanied by significantly increased serum sodium levels and plasma osmolarity. This study showed that pig was the most sensitive and rabbit the most resistant species to different NaCl concentrations. Although NaCl concentrations lower than 1.4% was considered as tolerable in rat, the animal health was affected. NaCl concentrations of 1.4% and higher may jeopardize animal health and were considered as toxic amounts.  相似文献   

16.
An experiment involving four qualities of irrigation water two sugar beet and three sweet sorghum cultivars was conducted in a split plot design with four replications at Rudasht Drainage and Reclamation Experiment Station in 1999. The results showed salinity of water has an adverse effect on sugar beet and sweet sorghum biomass. Sweet sorghum cultivar SSV108 had the lowest biomass under all qualities of irrigation water Sweet sorghum cultivar Rio had the maximum biomass with water qualities of 2, 5, and 8 dS m(-1). Sugar beet cultivar 7233 had the maximum biomass with 11 dS m(-1). The effect of irrigation water quality was not significant for sugar characteristics such as brix, pol and purity. However, responses of cultivars on the above parameters were significant and sugar beet cultivars had higher brix, pol and purity and lower invert sugar and starch than sweet sorghum cultivars. In conclusion, sweet sorghum cultivars are not recommended to be irrigated with saline water of more than 8 dS m(-1) for sugar production. Under such condition, they may be suitable to be grown for forage purposes.  相似文献   

17.
Jenerette GD  Chatterjee A 《Ecology》2012,93(5):959-966
Pulses of metabolic activity are a common ecological response to intermittently available resources, and in soils these pulses often occur in response to wetting. To better understand variation in soil pulses, we conducted a distributed field experiment at seven sites along a 2200-m elevation transect in southern California, USA. Treatments included both water and water + substrate additions and two measurements of soil respiration within one hour. These experiments were repeated 11 times throughout 2009-2010. Additions of substrate led to consistently higher pulse fluxes, exceeding 10 micromol CO2 x m(-2( x s(-1), than additions of water alone. These results support a sequential limitation by two resources where an initial limiting resource acts as a switch and, after activation, processes are regulated by a second resource. In contrast to general expectations of increasing pulses with higher soil organic matter (SOM), pulses exhibited strong scale dependencies. Pulses during the summer period and SOM were correlated positively within sites and negatively between sites. This cross-scale divergence implies that, at low elevations, the proportion of SOM available for pulse metabolism was a much larger fraction than at higher elevations. With expected climate changes leading to more frequent drying-wetting cycles, regulation of metabolic pulses will increasingly influence long-term biogeochemical dynamics.  相似文献   

18.
• Impact of urban development on water system is assessed with carrying capacity. • Impacts on both water resource quantity and environmental quality are involved. • Multi-objective optimization revealing system trade-off facilitate the regulation. • Efficiency, scale and structure of urban development are regulated in two stages. • A roadmap approaching more sustainable development is provided for the case city. Environmental impact assessments and subsequent regulation measures of urban development plans are critical to human progress toward sustainability, since these plans set the scale and structure targets of future socioeconomic development. A three-step methodology for assessing and optimizing an urban development plan focusing on its impacts on the water system was developed. The methodology first predicted the pressure on the water system caused by implementation of the plan under distinct scenarios, then compared the pressure with the carrying capacity threshold to verify the system status; finally, a multi-objective optimization method was used to propose regulation solutions. The methodology enabled evaluation of the water system carrying state, taking socioeconomic development uncertainties into account, and multiple sets of improvement measures under different decisionmaker preferences were generated. The methodology was applied in the case of Zhoushan city in South-east China. The assessment results showed that overloading problems occurred in 11 out of the 13 zones in Zhoushan, with the potential pressure varying from 1.1 to 18.3 times the carrying capacity. As a basic regulation measure, an environmental efficiency upgrade could relieve the overloading in 4 zones and reduce 9%‒63% of the pressure. The optimization of industrial development showed that the pressure could be controlled under the carrying capacity threshold if the planned scale was reduced by 24% and the industrial structure was transformed. Various regulation schemes including a more suitable scale and structure with necessary efficiency standards are provided for decisionmakers that can help the case city approach a more sustainable development pattern.  相似文献   

19.
Vegetation management in shallow groundwater table environments requires an understanding of the interactions between the physical and biological factors that determine root-zone soil salinization and moisture. In this study, the effects of groundwater depth and flood irrigation strategies on water and salt dynamics and reed water use were analyzed in the shallow groundwater region of the Yellow River Delta in China using the HYDRUS-1D model. The results indicated that there is a conflict between water, salt stress, and reed water use with variations in groundwater depth. A water table depth of 3.5 m is the minimum limit to maintain a safe level of soil salinity, but at this depth, the environmental stress on reeds is worsened by the decrease in soil water storage. Maintaining the flood pulses on the wetland, especially during May, may be critical for restoring the reed wetland in the Yellow River Delta.  相似文献   

20.
• The fluorescence peak location of 14 compounds interpreted at protein-like region. • The p-electron system inside aromatic ring contributes to the fluorophore region. • Functional group variation effects the emission spectra. • Decrease in quantum yield and increase in DE is due to atomic weight F>Cl>Br>I. • Theoretically results are in line with experimental ones. Various single-ring aromatic compounds in water sources are of great concern due to its hazardous impact on the environment and human health. The fluorescence excitation-emission matrix (EEMs) spectrophotometry is a useful method to identify organic pollutants in water. This study provides a detailed insight into the fluorescence properties of the 14 selected toxic single-ring aromatic compounds by experimental and theoretical analysis. The theoretical analysis were done with Time-Dependent Density Functional Theory (TD-DFT) and B3LYP/6-31G (d,p) basis set, whereas, Polarizable Continuum Model (PCM) was used to consider water as solvent. The selected compounds displayed their own specific excitation-emission (Ex/Em) wavelengths region, at Ex<280 nm and Em<340 nm, respectively. Whereas the theoretical Ex/Em was observed as, Ex at 240 nm–260 nm and Em at 255 nm–300 nm. Aniline as a strong aromatic base has longer Em (340 nm) than alkyl, carbonyl, and halogens substituted benzenes. The lone pair of electrons at amide substituent serves as a p-electron contributor into the aromatic ring, hence increasing the stability and transition energy, which results in longer emission and low quantum yield for the aniline. The fluorescence of halogenated benzenes illustrates an increase in the HOMO-LUMO energy gap and a decrease in quantum yield associated with atomic size (F>Cl>Br>I). In this study the theoretical results are in line with experimental ones. The understanding of fluorescence and photophysical properties are of great importance in the identification of these compounds in the water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号