首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of sheltering fish on growth of their host corals   总被引:1,自引:0,他引:1  
Stony corals are the foundation species of tropical reefs, and their structures can harbor a diverse range of mutualist taxa that can confer important benefits, including provision of nutrients. Prominent among the associates of branching coral in the genus Pocillopora are groups of zooplanktivorous damselfishes that take refuge in the coral to avoid their predators. In field and laboratory experiments, we explored the effects of colonies of resident damselfishes on growth of their host corals. Laboratory studies revealed a positive relationship between biomass of fish and output of ammonium. In the field, levels of ammonium were significantly elevated in the water surrounding the branches of Pocillopora occupied by colonies of damselfish, particularly in time periods following active feeding by the fish. Experimental manipulation of the presence of fish on host corals during a month-long field experiment revealed that corals hosting fish grew significantly more than those that lacked fish, and coral growth was positively correlated with the biomass of resident fish. The Pocillopora colonies in the field experiment varied in the degree of openness of their branching structure, and dye studies indicated that this affected their ability to retain waterborne nutrients. Together with biomass of resident fish, colony openness explained 76% of the variation in coral growth rate during the experiment. Corals can exhibit considerable morphological variability, and mutualistic fish respond to colony architecture during habitat selection, with some species preferring more open-branched forms. This makes it likely that corals may face tradeoffs in attracting resident fish and in retaining the nutrients they provide.  相似文献   

2.
Pelagic larval duration (PLD) is a commonly used proxy for dispersal potential in coral reef fishes. Here we examine the relationship between PLD, genetic structure and genetic variability in geographically widespread and ecological generalist species from one coral reef fish family (Pomacentridae) that differs in mean larval duration by more than a month. The genetic structure was estimated in eight species using a mitochondrial molecular marker (D-loop) and in a sub-set of five species using nuclear molecular markers (ISSRs). Estimates of genetic differentiation were similar among species with pelagic larvae, but differed between molecular markers. The mtDNA indicated no structure in all species except one, while the ISSR indicated some structure between the sampling locations in all species. We detected a relationship between PLD and genetic structure using both markers. These relationships, however, were caused by a single species, Acanthochromis polyacanthus, which differs from all the other species examined here in lacking a larval phase. With this species excluded, there was no relationship between PLD and genetic structure using either marker despite a range of PLDs of more than 20 days. Genetic diversities were generally high in all species and did not differ significantly among species and locations. Nucleotide diversity and total heterozygosity were negatively related to maximum PLD but again these relationships were caused by A. polyacanthus and disappeared when this species was excluded. These genetic patterns are consistent with moderate gene flow among well-connected locations and indicate that at this phylogenetic level (i.e., within family) the duration of the pelagic larval phase is unrelated to the patterns of genetic differentiation.  相似文献   

3.
Mellin C  Huchery C  Caley MJ  Meekan MG  Bradshaw CJ 《Ecology》2010,91(11):3138-3145
Temporal variance in species abundance, a potential driver of extinction, is linked to mean abundance through Taylor's power law, the empirical observation of a linear log-log relationship with a slope between 1 and 2 for most species. Here we test the idea that the slope of Taylor's power law can vary both among species and spatially as a function of habitat area and isolation. We used the world's most extensive database of coral reef fish communities comprising a 15-year series of fish abundances on 43 reefs of Australia's Great Barrier Reef. Greater temporal variances were observed at small and isolated reefs, and lower variances at large and connected ones. The combination of reef area and isolation was associated with an even greater effect on temporal variances, indicating strong empirical support for the idea that populations on small and isolated reefs will succumb more frequently to local extinction via higher temporal variability, resulting in lower resilience at the community level. Based on these relationships, we constructed a regional predictive map of the dynamic fragility of coral reef fish assemblages on the Great Barrier Reef.  相似文献   

4.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

5.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

6.
One of the key issues in coral evolutionary biology is the significance of interspecific hybridisation in shaping modern reef corals. Despite this, few detailed studies of speciation and evolution exist for scleractinians. We examined molecular relationships among 25 species of the species-rich scleractinian genus Montipora sampled from Irian Jaya (Indonesia) and Magnetic Island (central Great Barrier Reef) using a nuclear and mitochondrial marker. Mitochondrial DNA (mtDNA) haplotypes are shared among several species and at least four species are not monophyletic based on the nuclear intron sequences. Moreover, although the mtDNA and nuclear trees have similar topologies, there are several important inconsistencies. These results, in combination with the observation of simultaneous spawning of and in vitro cross-fertility between some Montipora species, suggest that occasional gene exchange through interspecific hybridisation occurs between a small number of species in this coral genus. Little correlation was observed between morphological and molecular relationships.Communicated by M.S. Johnson, Crawley  相似文献   

7.
The region of Madang, Papua New Guinea, has the highest reported species diversity of both anemonefishes (nine species) and their host anemones (ten species). To determine which factors may allow so many anemonefish species to coexist at this location, we studied their patterns of distribution, abundance, and recruitment. Population surveys at three replicate reef sites within four zones situated at varying distances from the mainland (nearshore, mid-lagoon, outer barrier, and offshore) indicated that each species of host anemone and anemonefish lived within a particular range of zones. Each species of anemonefish lived primarily with one species of host. Anemonefish species that lived with the same host species usually had different distribution patterns among zones (e.g., Amphiprion percula occupied Heteractis magnifica in nearshore zones, while A. perideraion occupied H. magnifica in offshore zones). Monitoring of natural populations showed that there were few changes (losses or recruitment) in the number or species of fishes associated with each individual anemone over periods ranging from 3 to 9 months. Recruitment was monitored on anemones with and without residents (resident fishes were removed) within each of three zones (nearshore, mid-lagoon, outer barrier). Significantly more anemonefishes recruited to anemones without resident fishes than to anemones with resident fishes. Each anemonefish species recruited to particular host species and zones. The distribution and abundance of the recruits of each fish species among zones were positively correlated with the distribution and abundance of resident fishes in the benthic habitat. This suggests that the spatial patterns of recruitment among zones strongly determined the distribution and abundance patterns of the benthic populations, and they were not the result of post-recruitment mortality or movement. Coexistence of the nine anemonefish species on the limited anemone resource was considered possible because of niche differentiation (i.e., differences in host and habitat utilization among zones), and the ability of two small species (i.e., Amphiprion sandaracinos and A. leucokranos) to cohabit individual anemones with other anemonefish species. Received: 29 July 1999 / Accepted: 1 September 2000  相似文献   

8.
Depczynski M  Bellwood DR 《Ecology》2006,87(12):3119-3127
Life history theory predicts a range of directional generic responses in life history traits with increasing organism size. Among these are the relationships between size and longevity, mortality, growth rate, timing of maturity, and lifetime reproductive output. Spanning three orders of magnitude in size, coral reef fishes provide an ecologically diverse and species-rich vertebrate assemblage in which to test these generic responses. Here we examined these relationships by quantifying the life cycles of three miniature species of coral reef fish from the genus Eviota (Gobiidae) and compared their life history characteristics with other reef fish species. We found that all three species of Eviota have life spans of < 100 days, suffer high daily mortality rates of 7-8%, exhibit rapid linear growth, and matured at an earlier than expected size. Although lifetime reproductive output was low, consistent with their small body sizes, short generation times of 47-74 days help overcome low individual fecundity and appear to be a critical feature in maintaining Eviota populations. Comparisons with other coral reef fish species showed that Eviota species live on the evolutionary margins of life history possibilities for vertebrate animals. This addition of demographic information on these smallest size classes of coral reef fishes greatly extends our knowledge to encompass the full size spectrum and highlights the potential for coral reef fishes to contribute to vertebrate life history studies.  相似文献   

9.
Few studies have examined predator-prey relationships in diverse communities such as those found on coral reefs. Here we examined patterns of spatial and temporal association between the local abundance of predator and prey fishes at Lizard Island on the Great Barrier Reef, Australia. We predicted that the nature of this association would have implications for patterns of prey-fish mortality. Strong positive relationships between prey and piscivore abundance were found throughout the study. Greater densities of predators and of prey were found on patch-reef habitats, compared with contiguous reef-slope habitats. Declines in prey-fish abundance on patch reefs were density-dependent and correlated with the densities of predators. The relative roles of recruitment and piscivore movement in determining patterns of predator and prey abundance were assessed from surveys of recruit densities and an intensive programme of tagging two species of rock-cod, Cephalopholis cyanostigma and C. boenak (Serranidae), over 2 years. Patterns of recruitment explained little of the variation in the abundance and distribution of piscivorous fish. If movement explains large-scale patterns of distribution, this was not evident from the tagging study. The two rock-cod species were highly sedentary, with individuals on patch reefs seldom moving among reefs. Individuals on reef slopes were also highly site-attached, although they moved greater distances than those on patch reefs. Although the mechanisms responsible remain to be determined, this study demonstrated strong associations between the abundance of piscivorous fish and their prey on coral reefs. This relationship appeared to be an important factor in producing density-dependent declines in the abundance of prey. Received: 30 April 2000 / Accepted: 22 September 2000  相似文献   

10.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   

11.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

12.
Coral reefs are under threat due to climate-mediated coral mortality, which affects some reef coral genera more severely than others. The impact this has on coral reef fish is receiving increasing attention, with one focal area assessing impacts on fish that feed directly on live coral. It appears that the more specialised a species of corallivore, the more susceptible it is to coral declines. However data are sparse for the Indian Ocean, and little is known about why some corals are preferentially fed upon over others. Here I assess feeding specialisation in three species of coral feeding butterflyfish in the Chagos Archipelago, central Indian Ocean, assess the food quality of the coral genera they target and document patterns of decline in the Seychelles following a severe coral mortality event. Cheatodon trifascialis was the most specialised coral feeder, preferentially selecting for Acropora corals, however, when Acropora was scarce, individuals showed considerable feeding plasticity, particularly for the dominant Pocillopora corals. C. trifasciatus also preferentially fed on Acropora corals, but fed on a much more diverse suite of corals and also displayed some selectivity for Porites. C. auriga is a facultative corallivore and consumed ∼55% live coral, which lies within the wide range of coral dependence reported for this species. C:N ratio analysis indicated Lobophyllia and Acropora have the highest food quality, with Pocillopora having the lowest, which conforms with diet selection of corallivores and helps explain preferential feeding. Obligate specialist feeders displayed the greatest declines through coral mortality in the Seychelles with obligate generalists also declining substantially, but facultative feeders showing little change. Clearly a greater understanding of the species most vulnerable to disturbance, their habitat requirements and the functional roles they play will greatly assist biodiversity conservation in a changing climate.  相似文献   

13.
Successful settlement of pelagic fish larvae into benthic juvenile habitats may be enhanced by a shortened settlement period, since it limits larval exposure to predation in the new habitat. Because the spatial distribution of marine fish larvae immediately prior to settlement versus during settlement was unknown, field experiments were conducted at Ishigaki Island (Japan) using light trap sampling and underwater visual belt transect surveys to investigate the spatial distribution patterns of selected pre- and post-settlement fishes (Acanthuridae, Pomacentridae, Chaetodonidae and Lethrinidae) among four habitats (seagrass bed, coral rubble, branching coral and tabular coral). The results highlighted two patterns: patterns 1, pre- and post-settlement individuals showing a ubiquitous distribution among the four habitats (Acanthuridae) and pattern 2, pre-settlement individuals distributed in all habitats, but post-settlement individuals restricted to coral (most species of Pomacentridae and Chaetodontidae) or seagrass habitats (Lethrinidae). The first pattern minimizes the transition time between the larval pelagic stage and acquisition of a benthic reef habitat, the latter leading immediately to a juvenile lifestyle. In contrast, the second pattern is characterized by high settlement habitat selectivity by larvae and/or differential mortality immediately after settlement.  相似文献   

14.
The number and maximum body size of the gobioid fish, Paragobiodon echinocephalus, increase with the size of its obligate host coral, Stylophora. Only the largest two individuals breed monogamously in each coral head, and the reproductive success of each spawning is positively correlated with body size. In this study, the plasticity in size and age at maturity in P. echinocephalus was examined. We analyzed life history data from gobies 15–20 mm TL (total length) at their initial marking. Gobies found in larger corals were of lower rank in size order and began to breed later at a larger size, usually upon moving to other corals. The size at maturity ranged widely from 17.2 to 36.0 mm TL. After maturation, growth rates decreased. Mortality, however, was not affected by the timing of maturation. The host coral size did not affect the growth and mortality of marked fish, but the mortality rate of juveniles prior to marking appeared to be higher in smaller corals. The estimated lifetime reproductive success did not differ between the gobies inhabiting corals of different size. Thus the plasticity in size and age at maturity in this species may be maintained by frequency-dependent selection in choosing a host coral size that affects an individual’s social status. Received: 5 April 1995/Accepted after revision: 18 February 1996  相似文献   

15.
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf. Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.  相似文献   

16.
Recruitment of juvenile fishes to coral grids, each comprising 4 colonies of 3 species of coral (Acropora formosa, Seriatopora hystrix and Pocillopora damicornis), was examined at 4 widely separated sites within the lagoon of One Tree Reef over two successive summers and intervening months (November 1976–January 1978). Recruitment was highly seasonal, with most recruitment occurring during summer. For many species, numbers settling differed greatly from year to year with total numbers (over all sites) differing as much as an order of magnitude between summers. Many fish species demonstrated marked preference among the three coral species as settling sites. The distribution of each of the 20 commonest species across the 4 lagoon sites differed significantly from a random pattern. Differences of an order of magnitude were common in the numbers of a given species recruited to different sites. Each site was preferred by at least one species. In each of 5 cases examined, the pattern of settlement of the species across the 4 sites changed significantly from one summer to the next. The distribution of recruits of a number of species corresponded to the distribution of adults, but for other species there was no correspondence. It is concluded that, at the spatial scale examined, patterns of recruitment of some taxa are consistently more variable than those of other taxa. The implications of spatial variability of recruitment for the distribution of adult fish is discussed and the importance of being able to discriminate such natural variability from other kinds of change is stressed.  相似文献   

17.
The ability of young coral reef fishes to feed using solely ultraviolet-A (UV-A) radiation during ontogeny was examined using natural prey in experimental tanks. Larvae and juveniles of three coral reef fish species (Pomacentrus amboinensis, Premnas biaculeatus and Apogon compressus) are able to feed successfully using UV-A radiation alone during the later half of the pelagic larval phase. The minimum UV radiation intensities required for larval feeding occur in the field down to depths of 90–130 m in oceanic waters and 15–20 m in turbid inshore waters. There was no abrupt change in UV sensitivity after settlement, indicating that UV photosensitivity may continue to play a significant role in benthic juveniles on coral reefs. Tests of UV sensitivity in the field using light traps indicate that larval and juvenile stages of 16 coral reef fish families are able to detect and respond photopositively to UV wavelengths. These include representatives from families that are unlikely to possess UV sensitivity as adults due to the UV transmission characteristics of the ocular media. Functional UV sensitivity may be more widespread in young coral reef fishes than in the adults, and may play a significant role in detecting zooplanktonic prey.  相似文献   

18.
Mortality rates of the coral reef fish Centropyge bicolor were based on the disappearance of known individual fish. Data were collected over three years from 1978 at four sites around Lizard Island, Queensland, Australia. To measure disappearance, membership of 36 harems (comprising about 150 fish at any one time) was determined at bimonthly intervals. Mortality rates varied significantly among the four study areas. A tenfold difference in mean mortality occurred between two of the areas. The ranking of areas according to mortality rate was similar for 1978–1979 and 1979–1980. The ranking of areas was again similar for 1980–1984 when mortality rates were determined from an additional census in June 1984. Average further life-expectancy of mature fish based on mortality rates varied from 1 yr in one study area to 5 to 13 yr in a different area.  相似文献   

19.
Seagrass beds are often considered to be important nurseries for coral reef fish, yet the effectiveness of these nursery functions (refuge and food availability) at different juvenile stages is poorly understood. To understand how the demands of juvenile fish on seagrass nursery functions determines the timing of ontogenetic habitat shifts from seagrass beds to coral reefs, we conducted visual transect survey and field tethering and caging experiments on three different sizes of the coral reef fish Pacific yellowtail emperor (Lethrinus atkinsoni) during its juvenile tenure in seagrass beds at Ishigaki Island, southern Japan. The study showed that although the number of individual L. atkinsoni juveniles decreased by >90 % during their stay in the seagrass nursery, the shelter and/or food availability functions of the nursery, at least for a juvenile size of approximately 5 cm total length (TL), provided the best survival and growth option. The timing of ontogenetic migration to coral reefs of larger fish (>8 cm TL) was attributed to foraging efficiency for larger food items in different habitats. Overall, the function of the seagrass bed nursery changed with juvenile body size, with marginally higher survival and significantly greater growth rates during early juvenile stages in seagrass beds compared to coral reefs. This would contribute to the enhancement in the number of individuals eventually recruited to adult populations.  相似文献   

20.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号