首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To allow testing of microbial destruction in medical waste incinerators, methods were developed to determine indicator microorganisms (Bacillus Stearothermophilus spores) in incinerator air emissions and residue. The emission trapping train consisted of a water cooled glass probe and impingers containing a neutral phosphate buffer. In field tests, spores were injected directly into the probe, and results showed that approximately 60 percent of the spores were recovered. Spores were analyzed with adequate precision using a microbial membrane filter unit. Lab experiments indicated that spores were stable in neutral pH phosphate buffer for up to 20 days, and heat shocking samples (heating to 80°C for 20 minutes) reduced spore numbers in acidic or basic buffer. Laboratory tests also showed that 60 to 70 percent of spores initially added to ash were recovered up to 22 days after addition of the spores. In addition, lab tests showed that spores can be effectively recovered from residue test pipes spiked with indicator spores.  相似文献   

2.
Flora JR  Baker B  Wybenga D  Zhu H  Aelion CM 《Chemosphere》2008,70(6):1077-1084
A series of experiments was performed to prepare acidic macroencapsulated buffers composed of 20% Ca(H2PO4)(2) and 80% Eudragit S 100 polymer and alkaline macrocapsules composed of 65% K2HPO4 and 35% Eudragit E PO polymer (the powdered form of Eudragit E 100). Eudragit S 100 was shown to be soluble at a pH greater than 7.0, while Eudragit E 100 was soluble at a pH less than 7.0. Both polymers did not impart significant biochemical oxygen demand. The Eudragit E PO polymer solution showed low toxicity (EC50=91%) based on the Microtox Acute Toxicity Test compared to the 0.1mM background phosphate buffer solution (EC50=100%) while the Eudragit S 100 polymer solution showed higher toxicity (EC50=53%). Batch tests showed that the acidic macrocapsules reduced the pH of a 0.1mM phosphate solution from 11 to neutral, while the alkaline macrocapsules increased the pH of a 0.1mM phosphate solution from 3 to neutral. The macrocapsules could potentially be used as an in situ proportional pH controller for groundwater remediation.  相似文献   

3.
The impact of fungicides triadimefon and propiconazole on soil bacterial populations from a strawberry field was investigated. Two fungicides were applied to the soil at concentrations of 10 mg/kg or 100 mg/kg with soil water contents 20.2% (fresh soil water content) or 26.0% (field capacity). Changes in bacterial communities were assessed using DNA extraction, polymerase chain reaction (PCR) amplification of the 16S rDNA and denaturing gradient gel electrophoresis (DGGE). High performance liquid chromatography (HPLC) was utilized to detect the residue of fungicides in soils. The results showed that propiconazole was more persistent than triadimefon in soils, and the two soil water contents did not cause significant differences in dissipation rates between the two fungicides. A high concentration of propiconazole could inhibit the existence of soil microbes while one of triadimefon might induce the microbial population in the first stage. From unweighted pair-group method using arithmetic averages (UPGMA) dendrograms, the effect of triadimefon and propiconazole at the two applied concentrations on a soil bacterial community could be long term. After triadimefon was applied for 60 days and propiconazole for 75 days, the compositions of microbial communities were not recovered. From the viewpoint of environmental protection, it was of significant importance to pay more attention not only to the residues of pesticide but also to the change in soil microbial communities.  相似文献   

4.
接种菌剂和外加能源对污泥生物干化效果的影响   总被引:1,自引:0,他引:1  
采用自主设计的试验装置,研究了接种菌剂和外加能源对城市污水处理厂脱水污泥生物干化效果的影响。结果表明:(1)试验7d,添加接种菌剂的物料升温累积值为66.0℃.d,比不添加接种菌剂(18.3℃.d)大261%;添加接种菌剂物料的水分去除率(27.33%)比不添加接种菌剂(18.56%)提高了8.77百分点;添加接种菌剂物料的挥发性固体(VS)降解率(20.90%)比不添加接种菌剂(12.31%)高8.59百分点;添加接种菌剂物料的减重率(18.67%)比不添加接种菌剂(10.80%)高7.87百分点。(2)试验8d,添加外加能源的升温累积值(69.5℃.d)比不加外加能源(46.2℃.d)大50.43%;添加外加能源物料的水分去除率(33.50%)比不加外加能源(28.56%)高4.94百分点;添加外加能源的物料VS降解率(22.62%)比不加外加能源(19.67%)高2.95百分点;添加外加能源物料的减重率(19.56%)比不加外加能源(17.87%)高1.69百分点。  相似文献   

5.
Pandey S  Singh DK 《Chemosphere》2006,63(5):869-880
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2 pyridyl phosphorothioate) 20 EC and Quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) 25 EC, were applied in groundnut (Arachis hypogaea L.) field as seed treatment at 25 ml/kg and soil treatment at 4 l/ha in 1998 and 1999. The residues of these insecticides were monitored during the entire crop season and their effect on the soil enzymes dehydrogenase, phosphomonoesterase and arginine deaminase were studied. Ninety nine percent of chlorpyrifos residues were dissipated within 60 days from seed treated soil and 98% dissipation was observed in soil treated field for the same days. Its half lives in seed treated soil were 8 days and 7 days and in soil treated field were 9.2 days in and 7.5 days in 1998 and 1999 respectively. Dissipation of quinalphos in comparison to chlorpyrifos was slow both in seed treated and soil treated field. Eighty seven percentage to 92% dissipation of quinalphos residues were observed from seed treated soil and 98% residues were dissipated from soil treated field within 75 days. Its half lives in seed treated soil were 20 days and 18 days and in soil treated field, its half lives were 13 days and 17 days 1998 and 1999 respectively. Inhibition in dehydrogenase activity followed by recovery was observed both in seed and soil treatments with chlorpyrifos. An inhibition of 17.2% was estimated after 60 days of seed treatment in comparison to control. Dehydrogenase activity was significantly reduced to 63% after 15 days of quinalphos seed treatment in comparison to control in 1998. Similar trends were observed in 1999. A significant inhibition in dehydrogenase activity was observed after soil treatment both in 1998 and 1999. Phosphomonoesterase activities were significantly inhibited upto 25.2% as compared to the control, on the 15th day of chlorpyrifos seed treatment in 1998 and similarly, after one day of treatment in 1999. Quinalphos inhibited the phosphomonoesterase activity till the end of the experimental period in the soil treated fields, whereas recovered within 30-60 days of treatment in the seed treated fields. Arginine deaminase activity was significantly stimulated within one day after chlorpyrifos seed and soil treatments in both years. The activity was almost threefold higher on the 30th and the 15th day of soil treatment in 1998 and 1999, respectively. A temporary inhibition of arginine deaminase activity was observed after quinalphos treatment. It was observed that in most of cases insecticides have temporary inhibitory effect on soil enzymes. However, inhibition was smaller in seed treated soil than in direct soil treatment.  相似文献   

6.
To enumerate microorganisms having colonized biofilters treating volatile organic compounds, it is necessary firstly to evaluate dispersion methods. Crushing, shaking and sonication were then tested for the removal of microflora from biofilters packing materials (peat and activated carbon). Continuous or discontinuous procedures, and addition of glass beads had no effect on the number of microorganisms removed from peat particles. The duration of treatment also had no effect for shaking and crushing, but the number of microorganisms after 60 min of treatment with ultrasound was significantly higher than that obtained after 0.5 min. The comparison between these methods showed that crushing was the most efficient for the removal of microorganisms from both peat and activated carbon. The comparison between three chemical dispersion agents showed that 1% Na-pyrophosphate was less efficient, compared with 200 mM phosphate buffer or 1% Na-hexametaphosphate. To optimize the cultivation of microorganisms, three different agar media were compared. Tryptic soy agar tenfold diluted (TSA 1/10) was the most suitable medium for the culture of microflora from a peat biofilter. For the activated carbon biofilter, there was no significant difference between Luria Bertoni, TSA 1/10, and plate count agar. The optimized extraction and enumeration protocols were used to perform a quantitative characterization of microbial populations in an operating laboratory activated carbon biofilter and in two parallel peat biofilters.  相似文献   

7.
beta-Carboline-3-carboxylic acid methylamide (FG 7142), an anxiogenic agent has been found in cigarette smoke condensate, but not in the cigarette itself. When a cigarette, except its filter portion, was immersed in 20 ml of potassium phosphate buffer, pH 7.4, then heated at 60 degrees C for 2 days with or without presence of methylamine, FG 7142 was detected only in the mixture containing methylamine. Furthermore, when the mixtures of beta-carboline derivatives and various amounts of methylamine hydrochloride were heated at 60 degrees C for 5 days, FG 7142 was formed only in the mixtures containing methylamine and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-caroxylic acid (MTCA) or 1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (TCCA). FG 7142 was also produced in the mixture of glucose, l-tryptophan and methylamine when heated at 200 degrees C in a dry condition. These observations suggest that FG 7142 is formed through the smoking process and that methylamine in cigarette smoke may play an important role in the formation of FG 7142.  相似文献   

8.
Stark K  Plaza E  Hultman B 《Chemosphere》2006,62(5):827-832
Leaching of ash and dried sewage sludge were investigated and compared with the leaching results of sludge residue from supercritical water oxidation (SCWO). This article focuses on how the composition of ash and sludge residues influences the extraction of phosphate and heavy metals and if different treatment temperatures of the sludge effect the leachability. Results showed that acid leaching gave a higher release of phosphate than alkaline leaching for all ash and sludge residue samples. Also, alkaline leaching dissolved phosphate with a lower metal contamination than acid leaching. Furthermore, it was found that iron had a low release at both alkaline and acid leaching from ash and from SCWO residue. The difference in composition of ash and sludge residue samples had no significant influence on release of phosphate at high concentrations of acid. Phosphate release from ash, dried sludge at 300 degrees C and SCWO residue showed similar results at 1M acid leaching. However, it seems to be easier to release phosphate from the SCWO residue than from the ash at low acid concentrations. SCWO residue showed higher release than the other ashes at 0.5M HCl. Results for alkaline leaching showed higher release from ash at 1M NaOH than from SCWO residue or from dried sludge at 300 degrees C. The leaching of phosphate from dried sludge seems to be temperature dependent, as the dried sludge treated at higher temperature showed less release of phosphate. It was found that the pre-treatment of the ash may be important for better release of phosphate.  相似文献   

9.
An incubation study was conducted under laboratory conditions to compare the effects of soil amendment of combined paper mill sludge (PS) and decomposed cow manure (DCM) on selected microbial indicators. A lateritic soil (Typic Haplustalf) was amended with 0 (control), 20 or 80tha(-1) (wet weight) of PS or DCM. The amended soils were then adjusted to 60% water holding capacity (WHC) or submerged conditions, and incubated at 27 degrees C in dark for up to 120days (d). The microbial biomass C (MBC), the basal soil respiration and the enzyme activities of the beta-glucosidase, acid phosphatase and sulphatase were analyzed at day 15, 30, 45, 60 and 120. Compared to the unamended soil (control), the MBC, the basal soil respiration and the enzyme activities increased with the rate of PS and DCM. At similar rate, the DCM treatment increased significantly the MBC, the soil respiration and the enzyme activities compared to the PS treatment. Also, the water regimes affected the microbial activities. At 60% WHC, the MBC and soil respiration increased during the first 30d and decreased thereafter. The enzyme activities showed similar trends, where they increased for the first 60d, and decreased thereafter. In contrast, under submerged condition, the MBC and enzymes activities declined during 120d, whereas the soil respiration increased. Compared to the control, the used of PS and DCM had no negative impact of the soil microbial parameters, even at the highest application rate. Long-term field experiments are required to confirm these laboratory results.  相似文献   

10.
Song D  Katayama A 《Chemosphere》2005,59(3):305-314
A natural attenuation experiment was carried out using a lysimeter for 308 days after contaminating the subsoil with hydrocarbons (HCs) and the changes in the structures of microbial community in the hydrocarbon (HC) contaminated subsoil were monitored by quinone profile analysis. The residues of HCs remained for 217 days in the subsoil after the contamination. The amount of total quinones (TQ), an indicator of microbial biomass, significantly increased in the HC contaminated subsoil for 217 days, comparing with that of the background subsoil or the subsoil before the addition of HCs. The major quinone species and the quinone composition, indicators of community structure, were significantly different between the HC contaminated soil and the background soil for 217 days. The major increased quinine species in the HC contaminated soil were menaquinone-8(H4), menaquinone-9(H2) and ubiquinone-9, indicating the propagation of Gram-positive bacteria with high guanine and cytosine content and gamma-subclass of Proteobacteria and fungi. There was no significant difference in the diversity of the quinone species (DQ), an indicator of taxonomic diversity of microbial community, except for the decrease in DQ in the shallow subsoil after 35 days when a high concentration of HCs was detected. After 308 days when the HCs in the subsoil disappeared, TQ returned to the level of the background soil, and no significant difference in quinone composition were observed between the HC contaminated soil and the background soil. The results suggested that respiratory quinones are effective biomarkers for characterizing the temporal changes of microbial community in the HC contaminated subsoil.  相似文献   

11.
Flubendiamide is a new insecticide that has been found to give excellent control of lepidopterous pests of tomato. This study has been undertaken to develop an improved method for analysis of flubendiamide and its metabolite des-iodo flubendiamide and determine residue retention in tomato and soil. The analytical method developed involved extraction of flubendiamide and its metabolite des-iodo flubendiamide with acetonitrile, liquid-liquid partitioning into hexane-ethyl acetate mixture (6:4, v v?1) and cleanup with activated neutral alumina. Finally the residues were dissolved in gradient high pressure liquid chromatography (HPLC) grade acetonitrile for analysis by HPLC. The mobile phase, acetonitrile-water at 60:40 (v v?1) proportion and the wavelength of 235 nm gave maximum peak resolution. Using the above method and HPLC parameters described, nearly 100 % recovery of both insecticides were obtained. There was no matrix interference and the limit of quantification (LOQ) of the method was 0.01 mg kg?1. Initial residue deposits of flubendiamide on field-treated tomato from treatments @ 48 and 96 g active ingredient hectare?1 were 0.83 and 1.68 mg kg?1, respectively. The residues of flubendiamide dissipated at the half-life of 3.9 and 4.4 days from treatments @ 48 and 96 g a.i. ha?1, respectively and persisted for 15 days from both the treatments. Des-iodo flubendiamide was not detected in tomato fruits at any time during the study period. Residues of flubendiamide and des-iodo flubendiamide in soil from treatment @ 48 and 96 g a.i. ha?1 were below detectable level (BDL, < 0.01 mg kg?1) after 20 days. Flubendiamide completely dissipated from tomato within 20 days when the 480 SC formulation was applied at doses recommended for protection against lepidopterous pests.  相似文献   

12.
Manure amendment in agricultural practice can have a large effect on herbicide dissipation because the period of manure plowing is close to the period of herbicide application. In addition, manure amendment is among the frequently encountered options in ameliorating pesticide pollution. In this research, the dissipation of the herbicide pendimethalin was examined after amendment with two common green manures, Lupinus luteus (L) or Cosmos bipinnatus (C), for 110 days in pH 5.2 and 7.7 soils (Sankengtzu [Sk] and Erhlin [Eh] soil, respectively). The microbial activity and ecology changes were examined by using Biolog EcoPlate and denaturing gradient gel electrophoresis (DGGE). In Sk soil, the half-lives of pendimethalin with L, C, and blank treatment were 49.0, 54.9, and 62.2 days, respectively, whereas that in Eh soil they were 46.3, 52.6, and 34.8 days, respectively. Pendimethalin dissipated quickly in more neutral soil (Eh soil), but the addition of manure can only increase the dissipation rate in acidic soil (Sk soil), indicating that the amendment of manures exerted different effect in pendimethalin dissipation rates in different pH soils. The application of pendimethalin and/or manure altered the microbial community activity after 24 h of incubation. After 110 days, the microbial community activities in green manure–amended soil were more similar to that with blank than pendimethalin treatment in both types of soils. In comparison with treatment C, microbial communities were more similar between treatment L and blank, indicating the superior effect over pendimethalin on microbial communities when applying Lupinus luteus. The research showed that the application of herbicide pendimethalin changed soil microbial community, and the amendment of manures exerted different effect in pendimethalin dissipation rates in different pH soils. It is assumed that the change in dissipation rates was originated from the microbial community change after different manure amendment.  相似文献   

13.
Microbial indicators of heavy metal contamination in urban and rural soils   总被引:10,自引:0,他引:10  
Urban soils and especially their microbiology have been a neglected area of study. In this paper, we report on microbial properties of urban soils compared to rural soils of similar lithogenic origin in the vicinity of Aberdeen city. Significant differences in basal respiration rates, microbial biomass and ecophysiological parameters were found in urban soils compared to rural soils. Analysis of community level physiological profiles (CLPP) of micro-organisms showed they consumed C sources faster in urban soils to maintain the same level activity as those in rural soils. Cu, Pb, Zn and Ni were the principal elements that had accumulated in urban soils compared with their rural counterparts with Pb being the most significant metal to distinguish urban soils from rural soils. Sequential extraction showed the final residue after extraction was normally the highest proportion except for Pb, for which the hydroxylamine-hydrochloride extractable Pb was the largest part. Acetic acid extractable fraction of Cd, Cu, Ni, Pb and Zn were higher in urban soils and aqua regia extractable fraction were lower suggesting an elevated availability of heavy metals in urban soils. Correlation analyses between different microbial indicators (basal respiration, biomass-C, and sole C source tests) and heavy metal fractions indicated that basal respiration was negatively correlated with soil Cd, Cu, Ni and Zn inputs while soil microbial biomass was only significantly correlated with Pb. However, both exchangeable and iron- and manganese-bound Ni fractions were mostly responsible for shift of the soil microbial community level physiological profiles (sole C source tests). These data suggest soil microbial indicators can be useful indicators of pollutant heavy metal stress on the health of urban soils.  相似文献   

14.
Park SK  Kim YK  Choi SC 《Chemosphere》2008,72(7):1027-1034
Consequences of orthophosphate addition for corrosion control in water distribution pipes with respect to microbial growth were investigated using batch and dynamic tests. Batch tests showed that the release of copper in either low or high organic carbon content water was decreased by 69% and 56% with addition 206 microg PO(4)-P, respectively. Dosing of orthophosphate against corrosion did not increase microbial growth potential in the water and in the biofilm in both corroded and uncorroded systems receiving tap water with a low content of organic carbon and of biodegradable organic fraction. However, in tap water having a high concentration of organic carbon from acetate addition, orthophosphate addition promoted the growth of bacteria, allowed more bacteria to assemble on corroded and uncorroded surfaces, and increased the consumption of organic carbon. Orthophosphate consumption did not exceed 1% of the amount of easily biodegradable organic carbon required for microbial growth, and the orthophosphate demand for corrosion control greatly exceeded the nutritional requirement of microbial growth. The results of the dynamic tests demonstrated that there was a significant effect of interaction between biodegradable organic carbon and orthophosphate on biofilm growth, whereby the effect of orthophosphate flux on microbial growth was dependent on the levels of biodegradable organic carbon. Controlling an easily biodegradable organic carbon would be therefore necessary to minimize the microbial growth potential induced by orthophosphate-based anticorrosion treatment.  相似文献   

15.
The body of information presented in this paper is directed to those individuals concerned with methods for the sampling and measurement of fluorides contained in stack gases produced during the manufacture of phosphate fertilizer or aluminum. An air stream containing gaseous hydrogen fluoride (HF), at concentrations of from 87 to 1700 µg F m-3, was generated and passed through 193 to 198 cm lengths of Pyrex glass, type 316 stainless steel, TFE Teflon, and methyl methacrylate-coated aluminum probes at flow rates of 28 I min-1. HF passing through the probes was collected in deionized water contained in a Greenburg-Smith impinger. The Teflon probe exhibited no loss of HF and no trend toward increased passage of HF with time. Significant amounts of fluoride were lost in 18 out of 20 tests with the methacrylate probe and in 4 out of 20 tests with the Pyrex and stainless steel probes. Trends toward increased passage of HF with time occurred with the latter three probe materials. The selective ion electrode and semiautomated methods gave equivalent results when samples were made alkaline to avoid sorption of fluoride by Tygon tubing used in the semiautomated method. These results demonstrated that a Teflon probe gave the most representative sample of gaseous HF. However, additional tests are needed before a final recommendation is made for a probe to sample fluorides in stack gases.  相似文献   

16.
Influence of pH on persulfate oxidation of TCE at ambient temperatures   总被引:10,自引:0,他引:10  
Liang C  Wang ZS  Bruell CJ 《Chemosphere》2007,66(1):106-113
In situ chemical oxidation (ISCO) is a technology used for groundwater remediation. This laboratory study investigated the use of the oxidant sodium persulfate for the chemical oxidation of trichloroethylene (TCE) at near ambient temperatures (10, 20 and 30 degrees C) to determine the influence of pH (pH=4, 7 and 9) on the reaction rate (i.e., pseudo-first-order rate constants) over the range of temperatures utilized. TCE solutions (60 mg l(-1); 0.46 mM) were prepared in phosphate buffered RO water and a fixed persulfate/TCE molar ratio of 50/1 was employed in all tests. Half-lives of TCE degradation at 10, 20 and 30 degrees C (pH 7) were 115.5, 35.0 and 5.5h, respectively. Maximum TCE degradation occurred at pH 7. Lowering system pH resulted in a greater decrease in TCE degradation rates than increasing system pH. Radical scavenging tests used to identify predominant radical species suggested that the sulfate radical (SO(4)(.-)) predominates under acidic conditions and the hydroxyl radical (.OH) predominates under basic conditions. In a side by side comparison of TCE degradation in a groundwater vs. unbuffered RO water it was demonstrated that when the system pH is buffered to near neutral pH conditions due to the presence of natural occurring groundwater constituents that the TCE degradation rate is higher than in unbuffered RO water where the system pH dropped from 5.9 to 2.8. The results of this study suggest that in a field application of ISCO, pH should be monitored and adjusted to near neutral if necessary.  相似文献   

17.
Acephate was resistent to hydrolysis in distilled, buffered water at pH 4.0 to 6.9, but not at pH 8.2, held for 20 days at 20 or 30 degrees C. The maximum conversion to methamidophos was 4.5% of the added acephate at pH 8.2 and 20 degrees C. The persistence of acephate in two natural waters, held at 9 degrees C for up to 42 and 50 days varied: 80% were recovered from pond water after 42 days, and 45% from creek water after 50 days. Rates of acephate degradation increased greatly when treated water samples were incubated in the presence of sediments, but not if water and sediment were autoclaved prior to treatment and incubation. The greatest conversion to methamidophos, 1.3% of the added acephate, had occurred after 42 days in pond water without sediment. Under the same conditions, carbaryl was less persistent than acephate in the natural waters: 18 to 20% were recovered from pond water after 42 days, and 37 to 40% from creek water after 50 days. The presence of sediment did not affect its degradation significantly. But more than 55% were recovered after 50 days if water and sediment were autoclaved prior to treatment and incubation. Neither acephate, methamidophos, nor carbaryl could be shown to escape from water into the atmosphere.  相似文献   

18.
A new energetic substance hexanitrohexaazaisowurtzitane (or CL-20) was tested for its toxicities to various ecological receptors. CL-20 (epsilon-polymorph) was amended to soil or deionized water to construct concentration gradients. Results of Microtox (15-min contact) and 96-h algae growth inhibition tests indicate that CL-20 showed no adverse effects on the bioluminescence of marine bacteria Vibrio fischeri and the cell density of freshwater green algae Selenastrum capricornutum respectively, up to its water solubility (ca. 3.6 mg l(-1)). CL-20 and its possible biotransformation products did not inhibit seed germination and early seedling (16-19 d) growth of alfalfa (Medicago sativa) and perennial ryegrass (Lolium perenne) up to 10,000 mg kg(-1) in a Sassafras sandy loam soil (SSL). Indigenous soil microorganisms in SSL and a garden soil were exposed to CL-20 for one or two weeks before dehydrogenase activity (DHA) or potential nitrification activity (PNA) were assayed. Results indicate that up to 10,000 mg kg(-1) soil of CL-20 had no statistically significant effects on microbial communities measured as DHA or on the ammonium oxidizing bacteria determined as PNA in both soils. Data indicates that CL-20 was not acutely toxic to the species or microbial communities tested and that further studies are required to address the potential long-term environmental impact of CL-20 and its possible degradation products.  相似文献   

19.
A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and the bioluminescent bacterium Vibrio fisheri (Microtox((R))). In addition, a Phase I Toxicity Identification Evaluation (TIE) was conducted to elucidate the cause of observed toxicity. Analytical concentrations of selected residues in whole sediment and interstitial water from the five sampling stations were considered in conjunction with the conclusions drawn from the toxicity tests and Phase I TIE results. Finally, a toxic units approach was used to evaluate the predicted toxicity of measured interstitial water residue concentrations. There was a lack of toxic response in the short-term interstitial water bioassays, indicating that oxidants, soluble forms of metals, and dissolved phase neutral organics were not likely toxicants. However, there was significant toxicity indicated by the whole sediment A. abidita bioassays. After 10 days, there was complete or near complete mortality in amphipods exposed to all of the sediment samples tested. Removal of interstitial water toxicity by filtration was common to all four stations that exhibited measurable initial toxicity. The observed toxicity characteristics are consistent with particle associated neutral organics. This conclusion is supported by toxicity removal via filtration, lack of toxicity in the Microtox((R)) assays, and the fact that whole sediments were more toxic than was interstitial water.  相似文献   

20.
Successful remediation of contaminated soils is often limited by the low bioavailability of hydrophobic pollutants, which may slow the process significantly. In this study we investigated the benefits of high temperature in enhancing hydrocarbon degradation rates and evaluated the effect of different biostimulants. Hexadecane polluted soil microcosms with various amendments were incubated both at 60 degrees C and room temperature (18 degrees C) and analyzed periodically up to 40d for the degradation of hydrocarbon and the response of the microbial population. Natural attenuation showed a satisfactory intrinsic degradative capability at 60 degrees C and the addition of inorganic N, P and K increased the degradation rates by 10%. The addition of rhamnolipid biosurfactant further enhanced the bioavailability of alkane to microbial degradation resulting in up to 71% removal at 60 degrees C and 42% at 18 degrees C. Significant input to hexadecane degradation occurred at 60 degrees C (70%) as a result of the bioaugmentation with thermophilic Geobacillus thermoleovorans T80, which did not take place at 18 degrees C. Coupling high temperature to all amendments resulted in 90% removal of the hexadecane from soil after 40d which was also accompanied with an increase in bacterial numbers. The results suggest that thermally enhanced bioremediation may be an efficient technology for the treatment of hydrocarbon-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号