首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In the present study, Phormium Tenax fiber reinforced PLA composites were processed by injection molding and twin screw compounding with a fiber content ranging from 10 to 30 wt%. Three surface treatment methods have been used to improve the Phormium Tenax fiber-matrix interfacial bonding that are as follows: (1) aqueous alkaline solution, (2) silane coupling agent, and (3) a combination of alkaline and silane treatment. The mechanical, thermal and morphological properties of the resulting composites were investigated. The results have shown that the moduli of surface treated fiber reinforced composites are lower than the ones obtained for untreated composites (as a consequence of the decrease in fiber modulus caused by the chemical treatments) and no significant increase in strength was observed for any of the composites compared to neat PLA. SEM micrographs of composite fractured surfaces confirmed an improvement in the interfacial strength, which was insufficient nonetheless to significantly enhance the mechanical behavior of the resulting composites. Results from thermogravimetric analysis and differential scanning calorimetry suggest that surface treatment of Phormium affects the ability of PLA to cold crystallize, and the thermal stability of the composites at the different fiber contents was reduced with introduction of alkali and silane treated Phormium fibers.  相似文献   

2.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   

3.
In this study, the influence of alkali (NaOH) treatment on the mechanical, thermal and morphological properties of eco-composites of short flax fiber/poly(lactic acid) (PLA) was investigated. SEM analysis conducted on alkali treated flax fibers showed that the packed structure of the fibrils was deformed by the removal non-cellulosic materials. The fibrils were separated from each other and the surface roughness of the alkali treated flax fibers was improved. The mechanical tests indicated that the modulus of the untreated fiber/PLA composites was higher than that of PLA; on the other hand the modulus of alkali treated flax fiber/PLA was lower than PLA. Thermal properties of the PLA in the treated flax fiber composites were also affected. Tg values of treated flax fiber composites were lowered by nearly 10 °C for 10% NaOH treatment and 15 °C for 30% NaOH treatment. A bimodal melting behavior was observed for treated fiber composites different than both of neat PLA and untreated fiber composites. Furthermore, wide angle X-ray diffraction analysis showed that the crystalline structure of cellulose of flax fibers changed from cellulose-I structure to cellulose-II.  相似文献   

4.
Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.  相似文献   

5.
Recently, investigations have been conducted on the use of natural fibers as reinforcement in low-melting point thermoplastics to improve mechanical properties of composites. However, due to some limitations of natural fibers, composite formulation and processing parameters must be controlled to produce a product with improved properties. This study was conducted to investigate the influence of flax fiber loading, use of compatibilizer and pretreatment on physical and mechanical properties of compression-molded composite. In this study, untreated and treated (sodium hydroxide-treated and mild-bleached flax fibers) fibers at 15% and 30% of the total product mass were used in formulations. To investigate the effect of compatibilizer on product properties, maleic anhydride grafted polypropylene (MAPP) was added at 5% by mass in the formulations. After extrusion of composites formulations, they were formed using compression molding. Results indicated that using flax fiber in composites without pretreatment and compatibilizer could result into products with inferior physical and mechanical properties; this could be compensated by the use of a compatibilizer. However, the use of compatibilizer had some negative effects on some other physical properties like color and melt flow index (MFI).  相似文献   

6.
CF/EP (carbon fibre/epoxy resin) composites were degraded by supercritical n-butanol with alkali additive KOH in a batch reactor. The catalytic degradation mechanism of the composites was investigated based on the analysis of liquid phase products by GC–MS and solid phase products by FTIR. The results indicate that alkali additive (KOH) can promote Guerbet reaction and increase hydrogen donor capability of supercritical n-butanol. The H· can combine promptly with the free radical formed by the scission of linear and crosslinked chains in epoxy resin to generate the liquid products, including phenol, 4-isopropylphenol, 4-(2-methylallyl)phenol and other derivatives of benzene and phenol. The combination of supercritical n-butanol with alkali additive is an effective way to degrade and recycle CF/EP composites.  相似文献   

7.
Sustainability, industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Biodegradable plastics and bio-based polymer products based on annually renewable agricultural and biomass feedstock can form the basis for a portfolio of sustainable, eco-efficient products that can compete and capture markets currently dominated by products based exclusively on petroleum feedstock. Natural/Biofiber composites (Bio-Composites) are emerging as a viable alternative to glass fiber reinforced composites especially in automotive and building product applications. The combination of biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, and sisal with polymer matrices from both nonrenewable and renewable resources to produce composite materials that are competitive with synthetic composites requires special attention, i.e., biofiber–matrix interface and novel processing. Natural fiber–reinforced polypropylene composites have attained commercial attraction in automotive industries. Natural fiber—polypropylene or natural fiber—polyester composites are not sufficiently eco-friendly because of the petroleum-based source and the nonbiodegradable nature of the polymer matrix. Using natural fibers with polymers based on renewable resources will allow many environmental issues to be solved. By embedding biofibers with renewable resource–based biopolymers such as cellulosic plastics; polylactides; starch plastics; polyhydroxyalkanoates (bacterial polyesters); and soy-based plastics, the so-called green bio-composites are continuously being developed.  相似文献   

8.
This study focused on improving the material properties of pea thermoplastic starch (TPS) with polycaprolactone (PCL) and flax fiber. Accordingly, composites of glycerol-plasticized pea starch, polycaprolactone, and flax fiber were prepared through solid-phase compounding and compression-molding. The specimens were characterized through scanning electron microscopy, tensile test, moisture absorption test, and differential scanning calorimetry. Morphological studies of the tensile fracture surfaces revealed poor TPS-PCL interfacial interaction and limited TPS-flax fiber interfacial bonding. The composites showed significant improvements in tensile strength with reduced moisture absorption capability essentially due to the hydrophobicity of PCL. Individual components of the composites retained their respective thermal properties, an indication of thermodynamic immiscibility.  相似文献   

9.
Investigation on the fatigue life of hybrid composites is critical to extend their applications and acceptance among industries; however, there is a lack of research focus on fatigue performance of the hybrid composite. In this study, the fatigue life of glass/kenaf woven-ply hybrid composite with thermoplastic and thermoset polymer matrix was investigated. Hybrid composites consist of two different fibre configurations: kenaf/glass/kenaf and glass/kenaf/glass. Thermoplastic hybrid composites were manufactured through the hot press moulding compression method, while thermoset hybrid composites were fabricated through the vacuum-assisted resin infusion method. The tensile strength and fatigue strengths of the kenaf/glass/kenaf composite have been identified to be significantly lower than those of the glass/kenaf/glass composite regardless of the types of matrix used. However, thermoplastic-based kenaf/glass/kenaf composites are less fatigue sensitive compared to glass/kenaf/glass composites; however, this phenomenon is vice versa for thermoset composites due to the epoxy matrix, which limits the stiffening effect in natural fibres.  相似文献   

10.
Natural fibres offer an interesting alternative to petrochemical products. Reclaimed cotton is mainly used as a low cost fibre to “fill” composites used as interior parts in the automotive industry. Mechanical requirements of such composites are low and the potential of the cotton-fibre to reinforce plastics is not used adequately. This paper gives background information and discusses the use of the cotton fibres in composites compared to ramie fibres. In this study the fibre strength was tested with a Dia-Stron device, fineness was tested with Fibreshape. A roller card is well suited to process fibres to a multi layer web. Cotton and ramie fibres were embedded in epoxy resin and a bio-based resin PTP®. The composites were tested for impact and tensile properties. The results show that mechanical properties of the composites are strongly influenced by fibre properties. The data and results demonstrate the important role force-elongation characteristics of fibre play in optimising the properties of natural fibre composites. Cotton with its morphological and mechanical properties can play a more crucial role to optimise products with a view to improve the impact properties.  相似文献   

11.
In this study, effect of fibre surface treatment on tensile, flexural and chemical resistance properties were studied for sisal fibre reinforced composites. Natural ligno cellulosic sisal fibre reinforced composites were prepared by different surface treatments by hand lay-up method. Fibre surface treatments were carried out to produce good interface between the fibre and the matrix to improve the mechanical properties. Fibre surface treatments were done by boiled the sisal fibres in different % of NaOH and treated the fibres in different % of NaOH, treated in acetic acid and methanol. Unsaturated polyester resin was used as the matrix for preparing the composites. For comparison, these properties for untreated sisal fibre reinforced composites were also studied. From the results it was observed that 18% aqueous NaOH boiled sisal fibre reinforced composites have higher tensile, flexural properties than other composites. Untreated sisal fibre composites show lower properties than treated composites. Chemical resistance properties indicate that all sisal fibre reinforced composites are resistance to all chemicals except carbon tetra chloride. The tests are carried out as per the ASTM standards.  相似文献   

12.

In this article, flexural, impact and dynamic mechanical properties of the Pineapple leaf fibres (PALF) and Washingtonia trunk fibres (GW) based bio-phenolic hybrid composites were examined. The pure and hybrid composites were fabricated using the hand lay-up technique with an overall fibre weight ratio of 50% in which GW and PALF were maintained in the fibre weight ratios of 50:50, 30:70, and 70:30 denoted as 1G1P, 3G7P, and 7G3P, respectively. Hybrid composites displayed better flexural strength, flexural modulus and impact strength than the GW composites and better viscoelastic properties than the PALF composites. Results revealed that 1G1P hybrid composites exhibited 25% and 12% improvements in flexural strength and modulus compared to the GW composites. 3P7K composites showed a twofold increase in impact strength than GW composites. The storage modulus of the pure and hybrid composites declined rapidly beyond the glass transition temperature. Furthermore, it was observed that the values of storage modulus for all the composites at 150 °C were similar regardless of the composite configuration. The Peak of loss modulus was found to increase in the following order: GW?>?7G3P?>?3G7P?>?1G1P?>?PALF. Furthermore, the temperature at the peak tan delta was improved, and a reduction in the tan delta peak was observed for hybrid composites compared to the pure composites. Finally, the PALF and GW hybrid combinations can be suitable for use in various applications such as textiles, machinery part production industries, medicine, automobiles, etc.

  相似文献   

13.
This study examined biocomposites based on low-density polyethylene (LDPE) and lignocellulosic fillers [wood flour (WF) and oil flax straw (FS)] selecting four size fractions of each lignocellulosic material as fillers for the composites. The primary aim was to evaluate the influence of fraction size on the composites’ basic properties; to accomplish this, the composites’ mechanical properties, thermal oxidation, thermophysical characteristics, and water absorption capacity were examined. Then microphotographs of the samples were created and length-to-diameter (L/D) ratio of the fillers was calculated, finding that the L/D ratio increased with increasing particle size. The particle size influenced the oxidative degradation and water absorption processes in composites with oil flax but not in those with WF. Biodegradation tests performed on the recovered soil found that the loss of mass in composites based on LDPE and FS was higher than in the same composites with WF. Moreover, at the initial stage of composting, the biodegradation rate correlated with the size of filler particles (i.e., the larger the particles, the higher the degradation rate of the biocomposite).  相似文献   

14.
This work is aimed to study the suitability of the wooden backbone of Opuntia ficus indica cladodes as reinforcement for the production of bio-composites. The wooden backbone can be extracted from O. ficus indica cladodes, which constitute a very relevant agricultural scrap, and is characterized by a thick walled cellular structure. In view of its potential in poly-lactic acid (PLA) matrix bio-composite production, two different possible applications were examined. In the first alternative, the wooden backbone was used in replacement of flax fibers for the production of fully consolidated bio-composites. Results obtained have shown that, though being characterized by lower properties compared to those of flax fiber composites, the opuntia actually works as an efficient reinforcement for PLA/wood flour matrix, increasing the flexural strength and elongation at break. In the second alternative, the cellular structure was used for the production of a sandwich bio-composite with a PLA/wood flour skin. In this case, the very high interlaminar adhesion strength between the skin and the core was considered as an indication of the potentiality of this material for the production of high strength sandwich structures. As a confirmation of this, no interlaminar debonding was observed during short beam tests.  相似文献   

15.
Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.  相似文献   

16.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

17.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

18.
PLA Based Biopolymer Reinforced with Natural Fibre: A Review   总被引:3,自引:0,他引:3  
In recent years renewed interest on the development of biopolymers, based on constituents obtained from natural resources is gaining much attention. Natural fibres such as kenaf, hemp, flax, jute, bamboo, elephant grass and sisal based polymer with thermoplastic and thermoset matrices offer reductions in weight, cost and carbon dioxide emission, less reliance on foreign oil resources and recyclability. Reinforced biopolymer with natural fibres is the future of “green composites” addressing many sustainability issues. Among the available biopolymer, PLA (polylactide) is the only natural resource polymer produced at a large scale of over 140,000 tonnes per year. Natural fibre reinforced PLA based biocomposites are widely investigated by the polymer scientists in the last decade to compete with non renewable petroleum based products. The type of fibre used plays an important role in fibre/matrix adhesion and thereby affects the mechanical performance of the biocomposites. The aim of this review is to investigate the effects of processing methods, fibre length, fibre orientation, fibre-volume fraction, and fibre-surface treatment on the fibre/matrix adhesion and mechanical properties of natural-fibre-reinforced PLA composites. Although much work has been performed to engineer the design of such superior biocomposites, the information is scattered in nature. A comprehensive review on the major technical considerations undertaken to prepare such biocomposites over the last decade is investigated to address the feasibility of wide scale industrial acceptance to such biocomposites. A brief review on the available natural fibres and biopolymer is also given for a comparative study.  相似文献   

19.
This research focused on life cycle assessment (LCA) and techno-economic analysis (TEA) comparisons of polylactic acid (PLA) composites, in order to compare organic to inorganic fillers. Organic fillers included DDGS, flax, hemp, rice husks, and wood, and were compared against inorganic fillers (glass and talc) for PLA-based composites. This study utilized LCAI and TEA methodology to estimate and quantify costs, emissions, and energy intensity (EI) associated with material acquisition, processing, transport, and end-of-life treatment used during plastic composite production. Emission categories analyzed include global warming potential (GWP), air acidification (AA), air eutrophication (AE), water eutrophication (WE), ozone layer depletion (OLD), air smog (AS), high carcinogens (HC), and high non-carcinogens (HNC). To achieve a “Cradle-to-Grave” perspective, two models were meshed, the plastic comparator (PC) and EIO-LCA (EIO), to simulate the EI and emissions associated over the entire life cycle. Based assumptions used, this research has shown that utilizing land fill end-of-life treatment and glass filler composite was the most environmentally harmful option, and maintained the highest economic impact, for all impact categories during PLA composite production. Alternatively, both DDGS and wood filler composites paired with recycling end-of-life treatment were shown to be the least environmentally damaging method and incurred the lowest cost of all PLA composites considered. This study also suggests that utilization of organic bio-based fillers produces a lower economic/environmental impact, and EI, compared to utilization of inorganic fillers in PLA composites. Accordingly, this research has demonstrated the impact of LCA/TEA paired analysis when assessing the bioplastic and biocomposite processing, which may be utilized as a precursor for parallel research undertakings.  相似文献   

20.
This work prepared poly (lactic acid) (PLA)/single-walled carbon nanotubes (SWCNTs) composites using a solution blend method, and investigated the influence of the physical properties of PLA/SWCNTs composites. In order to enhanced interfacial interactions between PLA and SWCNTs, the purified SWCNTs were given functionalisation treatments with a nitric acid/sulfuric acid mixture. These acid-treated SWCNTs (A-SWCNTs) were then grafted with 3-isocyanatopropyl triethoxysilane (A-SWCNTs-Si). When these functionalized SWCNTs were used to fill the PLA matrix, the fractured surface of composite does not present the pullout phenomenon. The dimensional stability obviously increased by a factor of approximately 72. The storage modulus was also significantly improved. The surface resistivity of the PLA/SWCNTs composites decreased from 1 × 1016 to 2.22 × 104 Ω/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号