首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 degrees C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.  相似文献   

2.
Wang S  Li H  Xie S  Liu S  Xu L 《Chemosphere》2006,65(1):82-87
Natural zeolite and synthetic zeolite, MCM-22, were employed as effective adsorbents for a basic dye, methylene blue, removal from wastewater. Two methods, Fenton oxidation and high temperature combustion, have been used for regeneration of used materials. It is found that MCM-22 exhibits equilibrium adsorption at 1.7 x 10(-4) mol g(-1), much higher than the adsorption of natural zeolite (5 x 10(-5) mol g(-1)) at initial dye concentration of 2.7 x 10(-5)M and 30 degrees C. Solution pH will affect the adsorption behaviour of MCM-22. Higher solution pH results in higher adsorption capacity. The regenerated adsorbents show different capacity depending on regeneration technique. Physical regeneration by high temperature combustion will be better than chemical regeneration using Fenton oxidation in producing effective adsorbents. Regeneration of MCM-22 by high temperature treatment can make the adsorbent exhibit comparable or superior adsorption capacity as compared to the fresh sample depending on the temperature and time. The optimal temperature and time will be 540 degrees C and 1h. The Fenton oxidation will recover 60% adsorption capacity. For natural zeolite, regeneration can not fully recover the adsorption capacity with the two techniques and the regenerated natural zeolites by the two techniques are similar, showing 60% adsorption capacity of fresh sample. Kinetic studies indicate that the adsorption follows pseudo-second-order kinetics.  相似文献   

3.
微波加热再生废弃的净化石油化工废水活性炭   总被引:1,自引:0,他引:1  
为了对石油化工废水净化处理后的废弃活性炭实现循环利用,提出了在无保护气体和活化气体条件下进行微波加热的方法。主要评估了再生温度和再生时间对再生活性炭的吸附性能和得率的影响。结果表明,在再生温度为600℃,再生时间为15 min时,活性炭的碘吸附能力达到最大值971 mg/g,得率为82.36%。再生活性炭比表面积高达1 028 m2/g,总孔体积为1.23 mL/g,平均孔径为4.89 nm。通过废弃活性炭和再生活性炭进行了SEM对比分析,再生活性炭表面杂质减少,孔隙数量明显增多。  相似文献   

4.
为了实现味精生产过程中产生的废活性炭的循环利用,提出了在通保护气体(氮气)的情况下管式电阻炉加热的方法。本研究考察了物料的质量,再生温度和再生时间对再生活性炭的吸附性能和得率的影响。结果表明,在物料质量为10 g、再生温度为800℃、再生时间为15 min时,再生活性炭的亚甲基蓝的值为180 mg/g,得率为67.23%。再生活性炭的比表面积1 015 m2/g,总孔体积1.05 mL/g,平均孔径4.47 nm。考察了再生次数对活性炭吸附性能的影响。对废活性炭和再生活性炭进行扫描电镜分析,再生活性炭的表面杂质明显减少,孔隙数量明显增多。  相似文献   

5.
In the present study, a series of activated carbons were prepared from agricultural waste corn cob by chemical and physical activations with potassium hydroxide (KOH)/potassium carbonate (K2CO3) and carbon dioxide (CO2). The effect of process variables such as impregnation ratio, impregnation time, activation temperature and soaking time of CO2 was studied in order to relate these preparation parameters with the physical properties of final carbon products. The resulting activated carbons were characterized by nitrogen adsorption-desorption isotherms at 77 K. The surface areas and pore volumes of carbons were estimated by the BET equation, the Langmuir equation and the t-plot method. Under the experimental conditions investigated, the main parameters in the activation of corn cob were found to be the impregnation ratio and activation temperature. The soaking time of CO2 is another important variable, which had a strong effect on the pore volume development. The BET surface area and total pore volume were as large as about 2000 m2/g and about 1.0 cm3/g, respectively. This study showed that the activation of agricultural waste corn cob with KOH/K2CO3 and CO2 was suitable for the preparation of large-surface-area activated carbons.  相似文献   

6.
Activated carbons were prepared from the agricultural waste of sugarcane bagasse by the chemical activation with zinc chloride (ZnCl2) at the activation temperature of 500 degrees C with soaking time of 0.5 hour. The influence of activation parameters on the final carbon products was examined by varying the impregnation ratio (i.e., mass ratio of added ZnCl2 to bagasse) and bagasse size. The physical properties of carbon products were characterized by nitrogen adsorption/desorption isotherms (at 77 K) and helium displacement method. The surface area and pore volume of carbons were thus obtained by the BET equation and t-plot method. Also, the particle density and porosity of carbons were estimated by the total pore volume and true density. The increases of the values of surface area and pore volume are approximately proportional to the impregnation ratio. The microporous carbon product with the BET surface area of 905 m2/g and total pore volume of 0.44 cm3/g was obtained in the present study. Further, the adsorption isotherms of two acid dyes from aqueous solutions onto the carbon products were performed at 30 degrees C. The results show that the adsorption isotherms of acid dyes with high molecular weight or large molecular size on the microporous adsorbents of activated carbons are plateau forms, indicating multilayer adsorptions, which may be attributed to the steric hindrance of the adsorbate molecules.  相似文献   

7.
ABSTRACT

Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 °C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.  相似文献   

8.
This study was aimed at investigating the physicochemical and microbiological changes that took place during the ageing process of spent bleaching earth in the presence of autochthonous microorganisms. Research material included fresh spent bleaching earth (SBE0) and the same material after 3 years of storage at the constant temperature of 20 °C, without aeration and moistening (SBE3). Changes in the chemical composition of analysed waste material were observed during its ageing process point to a spontaneous bioconversion of fat substance towards formation and/or release of free saturated fatty acids C16:0 and C18:0 (14.3 g 100 g?1 D.M.), triterpenes (8.48 g 100 g?1 D.M.), cholesterol (3.29 g 100 g?1 D.M.), small quantities of carbohydrates and esters (0.80 g 100 g?1 D.M.). This process was accompanied by other changes in physicochemical parameters of the waste material, such as colour, odour and viscosity, decrease in fat content from 28.27 to 24.6 % and that of soluble forms of metals (Mo, Cu, Fe, Zn, Ni, Cr and Mn), ranging from 25 to 75 %, and an increase in pH, from 3.85 to 4.2. At the same time, changes in the microbial consortium were observed.  相似文献   

9.
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.  相似文献   

10.
In the present study, a series of activated carbons were prepared from agricultural waste corn cob by chemical and physical activations with potassium hydroxide (KOH)/potassium carbonate (K2CO3) and carbon dioxide (CO2). The effect of process variables such as impregnation ratio, impregnation time, activation temperature and soaking time of CO2 was studied in order to relate these preparation parameters with the physical properties of final carbon products. The resulting activated carbons were characterized by nitrogen adsorption[ch-[chdesorption isotherms at 77 K. The surface areas and pore volumes of carbons were estimated by the BET equation, the Langmuir equation and the t-plot method. Under the experimental conditions investigated, the main parameters in the activation of corn cob were found to be the impregnation ratio and activation temperature. The soaking time of CO2 is another important variable, which had a strong effect on the pore volume development. The BET surface area and total pore volume were as large as about 2000 m2/g and about 1.0 cm3/g, respectively. This study showed that the activation of agricultural waste corn cob with KOH/K2CO3 and CO2 was suitable for the preparation of large-surface-area activated carbons.  相似文献   

11.
High surface area materials prepared from sewage sludge-based precursors   总被引:3,自引:0,他引:3  
This paper focuses on physical activation (CO2) and chemical activation (H3PO4, NaOH and KOH) of sewage sludge-based precursors. Our results show that (i) a simple acid washing treatment leads to a significant increase in the adsorption capacity of some precursors; (ii) under the experimental conditions tested, CO2 physical activation and chemical activation with H3PO4 were ineffective for an efficient porosity development and (iii) choosing an appropriate protocol, it is possible to obtain highly porous materials (700-1700 m2 g(-1)) by chemical activation of sludge-based precursors with alkaline hydroxides. The efficiency of the chemical activation with NaOH or KOH is very much influenced by the method used for mixing the activating agent and the precursor. The BET values of the materials obtained when physically mixing ground hydroxides with the precursor almost doubled the values obtained if other mixing methods are employed. Increasing the hydroxide:precursor ratio leads to an enhancement of the adsorption capacity of the adsorbents, with BET values ranging from 689 to 1224 m2 g(-1) for NaOH activation and from 853 to 1686 m2 g(-1) for KOH activation.  相似文献   

12.
ABSTRACT

In this study, the feasibility of preparing activated carbon from waste tea by physical activation using steam was investigated. The effects of activation temperature on yield and pore properties of the prepared activated carbon were studied. The yield decreased with increased activation temperature owing to the decomposition of cellulose and hemicellulose. The specific surface area and pore volume of the activated carbon were estimated using the Brunauer–Emmett–Teller method, Langmuir equation, and t-plot method. The specific surface area and micropore volume increased with increases in activation temperature, as additional volatile materials were released. The specific surface area significantly decreased at first but slightly increased with increasing activation time. The maximum specific surface area reached 995 m2/g at an activation temperature of 800 °C with a water flow rate of 0.075 g/min and a constant hold time of 0.5 hr. According to the nitrogen adsorption isotherms, micropores mainly developed when the activation temperature was below 800 °C, and both micropores and mesopores developed when it was above 800 °C. The results showed that activation temperature significantly affected micropore and mesopore volumes, as well as the specific surface area of the activated carbon. Overall, waste tea was found to be an attractive raw material for producing low-cost activated carbon.

Implications: Every year, a large amount of waste tea is generated after extraction. The high carbon content of waste tea showed that it can be used as raw material to produce activated carbon. This study investigated the feasibility of preparing activated carbon from waste tea by physical activation using steam. Temperature and time were found to have clear effects on pore properties. Our proposed method and raw material are more environmentally friendly and involve low cost. Furthermore, this offers a potential solution to the problems of waste tea disposal and low-cost activated carbon production.  相似文献   

13.
Leakage of saline-alkaline tank waste solutions often creates a serious environmental contamination problem. To better understand the mechanisms controlling the fate of such waste solutions in the Hanford vadose zone, we simulated reactive transport in columns designed to represent local site conditions. The Pitzer ion interaction module was used, with principal geochemical processes considered in the simulation including quartz dissolution, precipitation of brucite, calcite, and portlandite, multi-component cation exchange, and aqueous complexation reactions. Good matches were observed between the simulated and measured column data at ambient temperature ( approximately 21 degrees C). Relatively good agreement was also obtained at high temperature ( approximately 70 degrees C). The decrease of pH at the plume front is examined through formation of secondary mineral phases and/or quartz dissolution. Substantial formation of secondary mineral phases resulting from multi-component cation exchange suggests that these phases are responsible for a decrease in pH within the plume front. In addition, a sensitivity analysis was conducted with respect to cation exchange capacity, selectivity coefficient, mineral assemblage, temperature, and ionic strength. This study could serve as a useful guide to subsequent experimental work, to thermodynamic models developed for the concentrated solutions at high ionic strength and to other types of waste plume studies.  相似文献   

14.
考察了微波-活性炭联合处理技术对模拟染料废水中亚甲基蓝和Cd2+的去除效果。对于100 mL浓度为1 000 mg/L的亚甲基蓝溶液、活性炭用量为10 g时,新活性炭对亚甲基蓝的去除率为99.99%;采用700 W微波对吸附亚甲基蓝的活性炭辐射10 min进行再生并回用,经微波辐射再生10次后活性炭对亚甲基蓝的去除率为99.68%,未经微波作用反复使用10次的活性炭对亚甲基蓝的去除率为85.41%。结果表明:微波处理有效地减缓了活性炭吸附能力的下降速率,实现了活性炭再生和反复使用。在吸附过程中,Cd2+使活性炭对亚甲基蓝的吸附能力略有下降,而共存的亚甲基蓝则促进了活性炭对Cd2+的吸附,对新炭和再生后活性炭物理化学特性的表征证明了活性炭对亚甲基蓝的吸附为物理吸附,对Cd2+的吸附为化学吸附。  相似文献   

15.
为了探讨茉莉花茶废弃物的热解过程及温度对产物的影响,采用固定热解反应器和热重红外联用仪(TG-FTIR)对其进行了研究,结果表明,茉莉花茶废弃物解产生的固体量随温度升高而降低,气体产量随温度升高而增加,热解得到的液体量比例随热解温度不同而不同,表明茉莉花茶热解产物随热解温度不同而不同。热解产物主要有CO2、水、醇及含CC 的有机物和生物焦固体。500 ℃下制得的生物焦比表面积较低,仅为0.720 9 m2·g-1,经活化处理后的生物焦比表面积明显增大。经CO2和H2O活化后得到的生物焦的BET比表面积分别升至139.503 3 m2·g-1和122.527 6 m2·g-1。茉莉花茶热解的质量损失主要由于有机物挥发,用Coats-Redfern法对茉莉花茶废弃物热解过程进行模拟,得热解过程符合气体扩散模型,热解活化能约为60 kJ·mol-1;因此,气体扩散是茉莉花茶废弃物热解过程中主要的限制因素。  相似文献   

16.
Peng X  Luan Z  Zhang H 《Chemosphere》2006,63(2):300-306
In this work, the adsorption features of montmorillonite and the magnetic properties of Cu(II)/Fe(III) oxides were combined in a material to produce magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. The magnetic material is effective for the removal of humic acid. At pH 6.1, 96% removal was observed from 4.4 mg l(-1) humic acid solution containing 0.02 M NaCl. The adsorption is pH and ionic strength dependent. Adsorption is favored at lower pH values and dissolved NaCl can enhance the adsorption. The adsorption mechanism of humic acid to the magnetic material was suggested to be the ligand exchange reaction between carboxylic groups of humic acid molecules and the magnetic material surface. The magnetic material can be thermally regenerated. The temperature and time required to achieve good regeneration efficiency were determined to be 300 degrees C and 3 h, respectively. The regenerated adsorbent is still magnetic and approximately has as high specific saturation magnetization and good adsorption capacities as the as-prepared adsorbent.  相似文献   

17.
低品位硫铁矿烧渣制备导电掺合料   总被引:1,自引:0,他引:1  
采用川南低品位硫铁矿烧渣为主要原料,利用其中的高铁含量及大量活性烧粘土组分,通过在还原气氛下将硫铁矿烧渣与少量还原剂混合粉磨均匀后成型焙烧这一最优工艺,制备电阻率较低的具有胶结性质的导电掺合料,研究了温度、保温时间、配合比、粉磨细度等关键参数对电阻率的影响。结果表明:还原剂为混合料质量分数的9.1%(还原剂与烧渣比值=0.1),5~30 MPa成型后在800℃高温中焙烧60 min,可制备出电阻率为2.02Ω.m的导电掺合料。该方法不仅能解决川南硫铁矿烧渣的综合利用问题,而且工艺流程简单,产品附加值高。  相似文献   

18.
Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30-90 min, 50% H2O(g),/50% N2), activated carbons with surface areas between 360 and 950 m2 g(-1) were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin-Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.  相似文献   

19.
ABSTRACT

Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30–90 min, 50% H2O(g)/50% N2), activated carbons with surface areas between 360 and 950 m2 g?1 were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin– Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.

IMPLICATIONS This paper presents data on the preparation of activated carbons from agricultural residues, especially the waste from biohydrogen generation. Experimental results indicated that with proper carbonization and steam activation, activated carbons with diverse characteristics can be produced from various agricultural residues. The resulting activated carbons effectively adsorb toluene. This work provides useful information for reutilization of these agricultural residues, helping in decreasing the cost of biological waste treatment and providing a cost-effective alternative to conventional adsorbent production and application.  相似文献   

20.
Hung WT  Lin CF 《Chemosphere》2003,53(7):727-735
Catalytic destruction of chlorinated compounds is one of the key methods in reducing pollutant emissions. For the purpose of utilizing waste materials, a catalyst was regenerated from ferric ion sludge, obtained from the addition of iron salts to precipitate heavy metals. The sludge was dewatered, heated (800 degrees C for 4 h), and ground into smaller particles. The regenerated ferric oxide particles were then used as the oxidation catalyst to destroy CO formation during the combustion of three chlorinated solvents and to suppress dioxin formation in flue gas in a real waste solvent. In the presence of catalyst, the combustion efficiency (ratio of CO(2) to the sum of CO(2) and CO) for chlorobenzene was more than 98% at 850 degrees C in a pilot-scale incinerator. The destruction and removal efficiencies of chlorobenzene, 2,4-dichlorophenol and trichlorofluoroethane were more than three nines. In the absence of catalysts, the flue gas emission from a real waste could not meet the regulatory dioxin standard of 0.1 ng-TEQ/Nm(3) even with the powdered activated carbon injection. The use of catalyst at either 100 or 300 g/h, however, was able to meet the emission standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号