首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.  相似文献   

2.
3.
Information and telecommunications technology (ICT) and computer Internet networking has penetrated nearly every aspect of modern life, and is positively affecting human life even in the most remote areas of the developing countries. The rapid growth in ICT has led to an improvement in the capacity of computers but simultaneously to a decrease in the products lifetime as a result of which increasingly large quantities of waste electrical and electronic equipment (e-waste) are generated annually. ICT development in most developing countries, particularly in Africa, depends more on secondhand or refurbished EEEs most of which are imported without confirmatory testing for functionality. As a result large quantities of e-waste are presently being managed in these countries. The challenges facing the developing countries in e-waste management include: an absence of infrastructure for appropriate waste management, an absence of legislation dealing specifically with e-waste, an absence of any framework for end-of-life (EoL) product take-back or implementation of extended producer responsibility (EPR). This study examines these issues as they relate to practices in developing countries with emphasis on the prevailing situation in Nigeria. Effective management of e-waste in the developing countries demands the implementation of EPR, the establishment of product reuse through remanufacturing and the introduction of efficient recycling facilities. The implementation of a global system for the standardization and certification/labelling of secondhand appliances intended for export to developing countries will be required to control the export of electronic recyclables (e-scarp) in the name of secondhand appliances.  相似文献   

4.
The continuous dependence on electronic equipment at home and in the workplace has given rise to a new environmental challenge: electronic waste. Electronic waste, or e-waste, refers to electronic products that no longer satisfy the needs of the initial purchaser. These can include a wide variety of goods, such as computers, cellular phones, TVs, refrigerators, air conditioners, washing machines, and video cameras. These pieces of equipment contain hazardous materials such as lead, beryllium, mercury, cadmium, and chromium that pose both an occupational and environmental health threat. Although electronic equipment is considered safe during use, the potential for release of the toxic constituents increases during storage or disposal. Because of the growing number of discarded electronic devices resulting from rapid product obsolescence, this type of waste is an emerging concern among developing countries. This study estimates the current and future quantity of e-waste in the Philippines, with a focus on televisions, refrigerators, air conditioners, washing machines, and radios. Data from the National Statistics Office (NSO) serve as the input to a simple end-of-life model for each type of electronic device. Mathematical equations are derived incorporating other factors, such as the number of electronic devices in use, current end-of-life management practices, serviceable years of the product, and disposal behavior of consumers. An accurate estimation of e-waste generation would be useful in policy making as well as in designing an effective management scheme to avoid the potential threats of health impacts or environmental pollution. Preliminary estimates show that at the end of 2005, approximately 2.7 million units became obsolete and about 1.8 million units required landfilling. Over a 10-year period from 1995 to 2005, approximately 25 million units became obsolete. An additional 14 million units are projected to become obsolete in the next 5 years.  相似文献   

5.
Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.  相似文献   

6.
The life cycle assessment of an e-waste treatment enterprise in China   总被引:1,自引:0,他引:1  
Electrical and electronic waste (e-waste) has become one of the fastest growing waste streams in the world, and many countries have established e-waste treatment enterprises to solve their e-waste problems. In this study, a life cycle assessment (LCA) was undertaken to quantitatively investigate the environmental impacts of an e-waste treatment enterprise in China. The LCA is constructed by SimaPro software version 7.2 and expressed with the Eco-indicator 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. According to the survey data, discarded TV sets accounted for the highest proportion of e-waste treated in the enterprise in 2010. The e-waste treatment had little environmental impact, and at the same time large environmental benefits can be achieved mainly due to the recycled resources and reuse of some components. Based on the research results, it can be seen that recycled metal, especially copper, would be of more importance for environmental benefits. Relevant results and data from this study could provide decision support to enterprise managers and government sectors.  相似文献   

7.
Developing Asian countries have started to apply the principle of extended producer responsibility (EPR) to electronics and electrical equipment waste (e-waste). This policy approach aims to give electronic appliance manufacturers and importers responsibility for the collection and recycling of discarded electronic equipment. China and Thailand have drafted regulations on the recycling of e-waste with common characteristics such as the financial responsibility of producers and subsidies for collection. Although the proposed system is sensible, taking into account the fact that e-waste is a market-traded commodity, there are two major difficulties in implementing EPR in developing countries. First, it may be difficult for governments to collect funds from producers or importers if smuggled, imitation, or small shop-assembled products have a large share in the market. Second, the system creates incentives for collectors and recyclers to over-report the amount of collected e-waste in order to gain extra subsidies from the fund. Other policy measures such as the enforcement of pollution control regulations on informal recyclers, the prevention of smuggling, and the protection of intellectual property rights should accompany EPR policies.  相似文献   

8.
E-waste is a complex waste category containing both hazardous and valuable substances. It demands for a cost-efficient treatment system which simultaneously liberates and refines target fractions in an environmentally sound way. In most developing countries there is a lack of systems covering all steps from disposal until final processing due to limited infrastructure and access to technologies and investment. This paper introduces the ‘Best-of-2-Worlds’ philosophy (Bo2W), which provides a network and pragmatic solution for e-waste treatment in emerging economies. It seeks technical and logistic integration of ‘best’ pre-processing in developing countries to manually dismantle e-waste and ‘best’ end-processing to treat hazardous and complex fractions in international state-of-the-art end-processing facilities. A series of dismantling trials was conducted on waste desktop computers, IT equipment, large and small household appliances, in order to compare the environmental and economic performances of the Bo2W philosophy with other conventional recycling scenarios. The assessment showed that the performance of the Bo2W scenario is more eco-efficient than mechanical separation scenarios and other local treatment solutions. For equipment containing substantial hazardous substances, it demands the assistance from domestic legislation for mandatory removal and safe handling of such fractions together with proper financing to cover the costs. Experience from Bo2W pilot projects in China and India highlighted key societal factors influencing successful implementation. These include market size, informal competitors, availability of national e-waste legislation, formal take-back systems, financing and trust between industrial players. The Bo2W philosophy can serve as a pragmatic and environmentally responsible transition before establishment of end-processing facilities in developing countries is made feasible. The executive models of Bo2W should be flexibly differentiated for various countries by adjusting to local conditions related to operational scale, level of centralized operations, dismantling depth, combination with mechanical processing and optimized logistics to international end-processors.  相似文献   

9.
This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.  相似文献   

10.
The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.  相似文献   

11.
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007–2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.  相似文献   

12.
A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.  相似文献   

13.
The proper management of waste has several aspects: political, social, environmental, economic and technical. While the objectives of waste management policy differ little from country to country, the methods used to achieve them must be adapted to the prevailing circumstances in each. These factors include the availability of technical, economic, and human resources, and the competition that exists for them from other demands of national policy, especially in developing countries.There is no single correct method to achieve proper waste management. Nevertheless there are common needs that must be addressed by all nations that wish to manage their wastes better. These needs will include: adequate knowledge of the types of waste to be disposed of, how much there is, where it arises, who produces it, and what happens to it. It is also necessary to forecast how the present circumstances will change, and to identify appropriate methods to ensure that what should be done with waste is done. As forecasting the nature and quantity of waste that will arise in the future is difficult, an administrative mechanism is needed to ensure the regular supply of up-to-date data.In any city it is possible to equate the standard of waste management with the overall “standard of living” enjoyed by its inhabitants. Rising expectations of environmental improvement mean that disposal facilities must be appropriately designed, engineered and managed. They must also be planned for the future. The preparation of a thorough and effective plan is a lengthy task if done manually, and the discussion introduces the benefits that can be obtained from the use of computer models to assist, but not replace, human involvement in the preparation of a plan. Brief reference will be made to waste management models already used by waste managers to produce and update plans.  相似文献   

14.
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine’s program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine’s program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine’s program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste was collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine’s program, its positive aspects warrant consideration by other governments.  相似文献   

15.
Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China’s e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.  相似文献   

16.
Optimistic estimates suggest that only 30–70% of waste generated in cities of developing countries is collected for disposal. As a result, uncollected waste is often disposed of into open dumps, along the streets or into water bodies. Quite often, this practice induces environmental degradation and public health risks. Notwithstanding, such practices also make waste materials readily available for itinerant waste pickers. These ‘scavengers’ as they are called, therefore perceive waste as a resource, for income generation. Literature suggests that Informal Sector Recycling (ISR) activity can bring other benefits such as, economic growth, litter control and resources conservation. This paper critically reviews trends in ISR activities in selected developing and transition countries. ISR often survives in very hostile social and physical environments largely because of negative Government and public attitude. Rather than being stigmatised, the sector should be recognised as an important element for achievement of sustainable waste management in developing countries. One solution to this problem could be the integration of ISR into the formal waste management system. To achieve ISR integration, this paper highlights six crucial aspects from literature: social acceptance, political will, mobilisation of cooperatives, partnerships with private enterprises, management and technical skills, as well as legal protection measures. It is important to note that not every country will have the wherewithal to achieve social inclusion and so the level of integration must be ‘flexible’. In addition, the structure of the ISR should not be based on a ‘universal’ model but should instead take into account local contexts and conditions.  相似文献   

17.
从经济、能源结构、环境保护和资源利用等方面提出中国电力工业实施可持续发展的必要性,并提出要发展绿色电力实现电力工业可持续发展。重点对绿色电力进行分析,阐述了国内外绿色电力的发展现状以及中国发展绿色电力遇到的问题以及解决方法,并提出中国要积极发展绿色电力,走电力工业的可持续发展之路。  相似文献   

18.
Journal of Material Cycles and Waste Management - Consumer’s proper disposal of electronic waste (e-waste) resources is an indispensable component of the construction of green recycling...  相似文献   

19.
Sustainable recycling of municipal solid waste in developing countries   总被引:3,自引:0,他引:3  
This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.  相似文献   

20.
The draft legislation on e-waste prepared by the Chinese national government assigns management responsibility to local governments. It is an urgent task for the municipal government to plan an effective system as soon as possible to divert the e-waste flow from the existing informal e-waste recycling processes. This paper presents a case study implemented in Beijing, the capital city of China, with the purpose of predicting the amount of obsolete equipment for five main kinds of electronic appliances from urban households and to analyse the flow after the end of their useful phase. The amount to be handled was 885,354 units in 2005 and is predicted to double by 2010. Due to consumption growth and the expansion of urbanization it is estimated that the amount will increase to approximate 2,820,000 units by 2020: 70% of the obsolete appliances will be awaiting collection for possible recycling, 7% will be stored at the owner's home for 1 year on average and 4% will be discarded directly and enter the municipal solid waste collecting system. The remaining items will be reused for about 3 years on average after the change of ownership. The results of this study will assist the waste management authorities of Beijing to plan the collecting system and facilities needed for management of e-waste generated in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号