首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因.  相似文献   

2.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

3.
基于2013—2015年南昌市9个空气环境监测点的连续数据,分析了空气PM_(2.5)、PM_(10)质量浓度(以下简称浓度)的时空变异规律,并以景观格局指数为定量指标,研究了监测点的两种颗粒物浓度与其周边500 m半径、1000 m半径缓冲区的土地利用状况的关系.结果表明:(1)南昌市3年来PM_(2.5)和PM_(10)浓度逐年显著降低.(2)通过聚类分析,9个监测站依据颗粒物污染可分为4大类,表现出一致的城乡梯度差异.(3)在斑块类型水平上,PM_(2.5)和PM_(10)浓度与500、1000 m半径缓冲区的C-PLAND(建筑用地覆盖率)、C-SHDI(建筑用地多样性指数)显著正相关,与1000m缓冲区的F-ED(林地边界密度)显著正相关;与F-PLAND(林地覆盖率)、C-Fi(建筑用地分离度指数)、F-MPS(林地平均斑块面积)显著负相关.在景观水平上,PM_(2.5)和PM_(10)浓度在500 m缓冲区与LPI(最大斑块所占景观比例)显著负相关;与1000 m缓冲区的MPS(平均斑块面积)显著负相关.景观格局指数直接反映土地利用状况,它与PM_(2.5)和PM_(10)浓度的相关性,表现出生态学中典型的"源汇景观"关系.  相似文献   

4.
从天气背景场、气象要素、前体物和PM_(2.5)化学组分、气团运动轨迹以及大气氧化性等方面对北京市夏季两种不同的O_3和PM_(2.5)污染状况进行了分析.结果表明,O_3达到中度污染而PM_(2.5)浓度优良(O_3和PM_(2.5)一高一低)污染状况的天气形势场为:高空为偏西北气流,地面受高压后部控制;而O_3和PM_(2.5)同时达到中度污染(O_3和PM_(2.5)两高)的天气形势场为:高空为偏西气流,地面受低压控制.与O_3和PM_(2.5)一高一低污染状况相比,O_3和PM_(2.5)两高时的气象要素特征为:偏南风更为明显和相对湿度更高.O_3和PM_(2.5)两高时污染物浓度演变特征为,O_3和PM_(2.5)的起始浓度较高,PM_(2.5)日变化特征更为明显,而O_3平均浓度却低于O_3和PM_(2.5)一高一低的污染状况.前体物、大气氧化性以及PM_(2.5)化学组分分析的结果表明,较高的起始浓度在不利气象条件下的积累和吸湿增长以及当天较大偏南风造成的区域传输可能是造成O_3和PM_(2.5)两高污染状况中PM_(2.5)浓度达到四级中度污染的主要原因.  相似文献   

5.
基于2022年江苏省PM2.5、臭氧环境监测站数据和地面气象站数据,分析污染时空分布特征及其与污染源排放、气象要素的关系,从而为排放管控、污染治理提供科学依据。PM2.5整体呈北高南低、西高东低的空间特征,冬季浓度最高(30—75 μg∙m−3),西北部城市的PM2.5全年污染天数为全省最多(25—40 d)。臭氧呈南高北低的空间特征,夏季浓度最高(120—160 μg∙m−3),苏南城市的臭氧全年污染天数最多可达60—70 d。二者浓度在夏季具有较强的正相关性,在冬季相关性很弱。各季节PM2.5与温度、相对湿度、风向呈弱相关性,与风速关系稍强。PM2.5污染事件多发于温度为2—6 ℃、相对湿度为60%—85%、风速<3 m∙s−1的条件。各季节臭氧均与温度呈强正相关性,与相对湿度为负相关。风向为偏西风时容易出现高浓度,为第四象限风(东风到南风)时浓度通常较低。臭氧污染集中于日最高气温>28 ℃、相对湿度为60%—75%、风向为偏西风的条件,以此作为预报指标,正确率约为50%。  相似文献   

6.
2014年11月~2015年8月在舟山群岛嵊泗岛上设定采样点采集了4个不同季节的大气PM_(2.5)样品.采用微波消解-原子荧光光度法测定了颗粒物中汞及其不同形态,采用热/光碳分析仪分析样品中有机碳(OC)和元素碳(EC).结果表明,嵊泗岛上大气PM_(2.5)中总汞(PBM)的质量浓度范围为0.02~1.25 ng·m-3,而单位质量颗粒物中汞的含量为(12.46±18.79)μg·g-1,比陆地城市PM_(2.5)的汞含量偏高.ANOVA分析结果表明,PBM的季节变化规律为:秋季春季冬季夏季.春秋季节汞的质量浓度较高,这表明春秋季节嵊泗地区的汞可能受到外来输送的影响.此外,大气PM_(2.5)中不同形态汞的分析结果表明,惰性汞(RPM)的比例最高,占53.1%.OC、EC均与PBM显示出明显的正相关性,表明碳组分有利于汞的气-粒转化.由于OC/EC比值间接反映了大气光氧化能力的高低,而OC/EC与可溶盐酸汞(HPM)呈显著正相关,这说明高浓度HPM主要来自于大气中的气-粒转化.char-EC/soot-EC与形态汞呈现显著负相关,表明嵊泗地区的大气颗粒汞主要受外界源输入的影响.  相似文献   

7.
利用热光分析法探究了西安市2017年353个PM2.5样品中的元素碳(EC)、有机碳(OC)、甲醇可萃取有机碳(MSOC)以及热-光分析法得到的7个碳组分(OC1~4、EC1~3)的质量浓度、季节变化趋势以及来源.结果表明,西安市2017年OC、EC以及MSOC的平均质量浓度分别为(17.56±11.83)、(4.08±2.95)和(11.10±6.77)μg·m-3.OC质量浓度的季节性趋势为冬季 > 春季 > 夏季 > 秋季;EC为冬季 > 春季≈秋季 > 夏季.MSOC/OC比值年平均值为0.64±0.20,冬季最高,夏季最低.春季OC和EC相关性较好(r2=0.76),而在冬季的相关性较差(r2=0.43),说明碳气溶胶的来源不同.采用EC示踪法对二次气溶胶的含量进行估算,SOC的平均含量分别占到了春、夏、秋、冬四季OC质量浓度的51.9%、38.4%、37.3%、44.0%.采用主成分分析法得出西安市的碳质气溶胶主要来源于燃煤和机动车排放.  相似文献   

8.
为了解京津冀区域PM_(2.5)中碳组分污染特征,于2015年7月和10月及2016年1月和4月在北京、天津、保定、石家庄、沧州5个城市同步采集PM_(2.5)样品,采用热/光分析法分析样品中有机碳(OC)和元素碳(EC),使用OC/EC最小比值法估算二次有机碳(SOC).结果表明:京津冀区域主要城市OC、EC和SOC的年均浓度分别为12.9~28.5、4.1~7.9和3.3~10.4μg·m~(-3),OC/EC和SOC/OC的比值分别为2.4~3.0和0.26~0.32.OC和EC的浓度呈现保定石家庄沧州天津北京的空间分布特点和夏季春季秋季冬季的季节变化特点.OC/EC的比值及OC和EC的相关性在夏季最低,冬季最高,这可能与京津冀区域冬季采暖燃煤有关,冬季不利的气象条件也加剧了碳质气溶胶污染.冬季较高的SOC浓度主要与低温、气态前体物的增加以及频繁出现的逆温、小风和混合层高度降低等不利气象条件有关.京津冀区域碳质气溶胶的污染特征具有空间相似性.  相似文献   

9.
流行病学研究表明,空气细颗粒污染物(PM_(2.5))的暴露与过敏性疾病有一定的联系;然而,PM_(2.5)暴露与过敏性疾病之间的关系尚未完全阐明,特别是室内环境中PM_(2.5)涉及到过敏或非过敏的作用不详.为了比较研究过敏与非过敏儿童室内PM_(2.5)的细胞毒性,在武汉市洪山区10户家庭室内进行了为期3个月的采样,分别收集过敏与非过敏儿童的室内PM_(2.5).采用有机/元素碳测定仪对二者PM_(2.5)成分中的含碳组分进行了分析,并通过检测昆明小鼠巨噬细胞的形态及吞噬功能影响、细胞活力、乳酸脱氢酶(LDH)漏出率等指标,来检测PM_(2.5)暴露所致的细胞毒性.结果表明,高剂量(200μg·mL~(-1))PM_(2.5)暴露对小鼠巨噬细胞的形态及吞噬功能会产生不利的影响;与非过敏儿童的室内PM_(2.5)暴露组相比,过敏儿童的室内PM_(2.5)暴露组诱导巨噬细胞产生的毒性作用更明显.细胞体外测试结果提示:在相同PM_(2.5)暴露剂量下,引起儿童过敏症的室内PM_(2.5)成分具有重要影响.  相似文献   

10.
城市PM2.5健康损害评估研究   总被引:3,自引:1,他引:3  
刘帅  宋国君 《环境科学学报》2016,36(4):1468-1476
参考美国Ben MAP软件,提出城市PM_(2.5)健康损害评估的基本框架,并就评估方法和参数使用中的关键问题进行了论述,包括人群健康损害评估指标的确定、空间尺度和时间尺度的选择、健康终点的界定、人群年龄结构的划分、比较的基准的确定,以及"剂量-反应"关系参数和生命价值参数的选择等.本文收集和整理了2014年北京市空气质量监测点PM_(2.5)浓度监测数据及暴露人口、基期死亡率等数据,运用"向标准靠拢(Rollback to Standard)"的方法,估算北京市PM_(2.5)达到空气质量标准情景下的浓度值,以此作为比较的基准,使用美国Ben MAP数据库收录的"剂量-反应"关系参数,分别基于"工资-风险"法模型和人力资本法模型估计生命价值参数,代入本文城市PM_(2.5)健康损害评估的基本框架,计算2014年北京市PM_(2.5)对人群健康的损害.  相似文献   

11.
海口市PM_(2.5)和PM_(10)来源解析   总被引:1,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

12.
用GC/MS,对金华地区3个采样点、四个季节,225个PM_(2.5)样品中10种极性有机示踪化合物进行了分析,包括天然源:3个异戊二烯SOA示踪物、1个α-蒎烯SOA示踪物和2个真菌孢子示踪物,和人为源:1个甲苯SOA示踪物、3个生物质燃烧示踪物.结果表明,异戊二烯SOA示踪物浓度为3.41~48.50 ng·m~(-3),α-蒎烯SOA示踪物浓度为2.45~25.40 ng·m~(-3),甲苯SOA示踪物为4.75~39.80 ng·m~(-3).各SOA示踪物均有明显的季节变化,其中,异戊二烯SOA示踪物呈夏季秋季≈春季冬季,α-蒎烯SOA示踪物夏季春季≈秋季冬季,甲苯SOA示踪物秋季夏季春季冬季.估算得出甲苯SOC对OC的贡献为3.03%~24.50%,而来源于生物质燃烧的有机碳对OC的贡献可以达到1.23%~42.80%.表明人为源排放前体物的二次转化以及生物质燃烧是金华地区大气细颗粒物污染的重要来源.  相似文献   

13.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧...  相似文献   

14.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

15.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

16.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

17.
降水和风对大气PM2.5、PM10的清除作用分析   总被引:2,自引:0,他引:2  
对合肥2015—2017年的降水、风和PM_(2.5)、PM_(10)浓度观测数据统计研究发现,降水对PM_(2.5)、PM_(10)有一定的清除作用,尤其在秋冬季节.秋冬季节小雨、中雨分别导致PM_(2.5)和PM_(10)浓度降低23.1%、40.4%和32.0%、63.7%.雨日PM_(2.5)/PM_(10)比例上升8.4%,表明降水对PM_(10)清除作用更显著.降水前后PM_(2.5)浓度变化与降水前PM_(2.5)浓度、降水强度、降水时长密切相关.当降水强度大于4 mm·h~(-1)或PM_(2.5)初始浓度高于115μg·m~(-3)时,降水对PM_(2.5)产生明显清除作用;而降水强度小于1 mm·h~(-1)或PM_(2.5)初始浓度低于115μg·m~(-3)时由于吸湿增长作用极易造成PM_(2.5)浓度反弹升高;且持续3 h以上雨强介于1~4 mm·h~(-1)的降水也对PM_(2.5)产生清除作用.降水前后PM_(10)浓度变化与初始浓度密切相关,而与雨强相关性较弱.当PM_(10)初始浓度大于50μg·m~(-3),降水就对PM_(10)产生明显清除作用,且PM_(10)初始浓度越高,降水后PM_(10)浓度下降越多.风速大于2 m·s~(-1)可显著降低PM_(2.5)浓度,因此,当风速大于4 m·s~(-1)时合肥较少出现中度及以上污染,但易造成地面起尘,使PM_(10)浓度不降反升.合肥冬季严重污染主要出现在西北风向,夏季中度以上污染天气较少,主要出现在风速低于3 m·s~(-1)的东南风向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号