首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics and formation of leachates from waste gasification and grate firing bottom ash were studied using continuous field measurements from 112 m3 lysimeters embedded into landfill body for three years. In addition, the total element concentrations of the fresh ash were analysed and laboratory batch tests were performed to study leachate composition. The three-year continuous flow measurement showed that about one fifth of the leachates were formed, when the flow rate was >200 l/d, covering <3.5% of the study time. After three years, the liquid/solid-ratio for the quenched grate ash was 1 (l/kg (d.m.)) and for the initially dry gasification ash 0.4 (l/kg (d.m.)). The low initial water and residual carbon content of the gasification ash kept the leachate pH at a high level (>13) major part of the study. In the grate ash leachate pH was lower (<8) due to the presence of organic carbon and biodegradation indicated by biological oxygen demand and redox potential measurements. In the gasification ash the high pH probably delayed leaching of major elements such as Ca, therefore, raising the need for a longer after-care period. The high pH also explains the higher leaching of As from the gasification ash compared to the grate ash both in the batch test and under landfill conditions.  相似文献   

2.
Landfill leachates sampled during and after an accidental landfill fire were analysed and the levels of selected metals and chemical compounds compared to those occurring in the leachate under normal conditions. The fire at the landfill site was put out by excavation and cooling by use of water. The investigation during the fire and fire fight revealed a moderate increase in the level of nitrogen and also in pH and conductivity. Heavy metals and COD in the leachate showed considerably increased levels. In general, the determined variables appeared to normalise within one week after the fire was extinguished. It can be concluded that landfill fires extinguished by excavation may lead to elevated leachate levels of especially COD and heavy metals, but that this is only a short-term effect.  相似文献   

3.
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH4+, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW<1kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu2+ was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48h with leachate in the ratio of 5g of sample per 50ml of leachate. Cu2+ uptake by the raw soil was approximately 4.60microg/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11microg/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu2+.  相似文献   

4.
Leachability and metal-binding capacity in ageing landfill material   总被引:1,自引:0,他引:1  
In order to study the stability of landfilled heavy metals, landfill material from a combined household and industrial waste landfill was aerated for 14 months to simulate the natural ageing processes as air slowly begins to penetrate the landfill mass. During aeration, the pH of the landfill material decreased from around 8.6 to 8.1 and the carbon content also decreased. In order to investigate the possible fate of metals in ageing landfills, a four-stage sequential extraction technique was applied. The ability of the materials to bind metal ions by electrostatic attractions and to form stronger complexes was studied separately. The amount of exchangeable cations, the capacity to bind metal ions by electrostatic attraction and the capacity of the landfill material to complex copper ions were increased by the aeration process. However, results from the sequential analysis showed an increased solubility of sulphur and some metals (Cd, Co, Cu, Ni and Zn). Equilibrium speciation models (Medusa) indicated that the organic matter deposit had a significant capacity to bind metal ions provided that pH was sufficiently high. However, as carbonates are consumed over time, the risk for metal mobility increases. Therefore, the landfills can become an environmental risk, depending on variations in the solubility of metal ions due to changes in pH, redox status and the availability of organic material.  相似文献   

5.
A laboratory bench-scale fixed-bed column study operated as a down-flow configuration was conducted to evaluate Sphagnum peat moss and crushed mollusk shells as natural low-cost adsorbents for the removal of heavy metals from aerated and unaerated synthetic landfill leachate. Columns were packed with 15 cm of prepared peat moss, or 15 cm adsorbent mixtures made up of peat moss and crushed mollusk shells (4.0–4.75 mm) from Lake Ontario at different bed depth ratios. Peat was found to have the best adsorption capacities in columns treating aerated synthetic leachate for cadmium and nickel with 78.6% and 83.8% removal efficiencies, respectively. The removal of chemical oxygen demand (COD) and total nitrogen from the synthetic leachate was also monitored to evaluate the potential effects of biological activity on heavy metal adsorption. Columns receiving unaerated raw synthetic leachates did not show any significant removal of COD and total nitrogen, whereas some reduction in COD and total nitrogen was noted in the columns treating aerated synthetic landfill leachate. The results suggested that biological activity and biofilm growth could positively contribute to heavy metal retention within the fixed-media biosorption columns.  相似文献   

6.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

7.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

8.
The contents of available nutrients in pig slurries are not easy to quantify in situ without laboratory facilities, but chemical analyses using standard laboratory methods also take time and are costly and not practical for most farms. Thus, when animal slurries are applied to land, their fertiliser potential is often unknown. In addition, in the last years, the changes in the management of industrial piggeries has changed the nature of the pig slurries vg. decrease of the dry matter content, and consequently the methods and equations used for estimating the nutrient contents in these residues must be checked. In our study, slurry samples were collected from the storage tanks of 36 commercial farms in Southeast Spain. Samples were analysed for pH, electrical conductivity (EC), redox potential (RP), specific density (D), total solids (TS), sedimentable solids (SS), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), total nitrogen (TKN), ammonium nitrogen (AN), organic nitrogen (ON), and total contents of phosphorus, potassium, calcium and magnesium. Relationships between major nutrient levels of pig slurries and a range of physical and chemical properties were investigated. We also analysed the variability of pig slurries according to the production stage. TKN, AN and K were closely related to EC. The P content in slurries was related more closely to solids-derived parameters such as D. The use of multiple properties to estimate nutrient contents in pig slurries, especially for AN and K, seemed unnecessary due to the limited improvement achieved with an additional property. Therefore, electrical conductivity seemed to be the most appropriate single, easily determined parameter for estimation of total and ammonium nitrogen and potassium in pig slurries, with more than 83% of the variance explained. P seemed to be the worst key nutrient for estimation using any easily determined parameter.  相似文献   

9.
The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.  相似文献   

10.
Several urban wastes of different nature and level of organic matter stability (municipal solid wastes, sewage sludges and composts) have been characterized analysing fertility and phytotoxicity parameters. Sewage sludges showed the highest N and P values of all the wastes. The total K content of the wastes was low but almost all was available to plants. Mature composts had the lowest organic carbon and humic substances values as a consequence of organic matter mineralization during the composting process. The soluble C at pH 2/precipitated C ratio decreased as the stability of the organic matter increased. In spite of the heterogeneity of the wastes analysed, the organic matter/total organic C ratio was largely constant with a mean value of 2.05. In no case did the heavy metal levels exceed the maximum allowed by the EU disposition for sewage sludges use in agriculture. The highest levels of phytotoxic substances occurred in the fresh wastes. The germination rates and root length were highest with mature composts. Germination index and root length were negatively correlated with water soluble carbon (WSC) and WSC/N ratio. The principal component analysis showed that extractable C, soluble C at pH 2 and water soluble C were the C fractions which most contributed to the total variability.  相似文献   

11.
In Eritrea, farmers have applied landfill materials as fertiliser to their fields for several decades. A sampling scheme in the landfill site of Asmara and selected farmers' fields was carried out to investigate the benefits and risks of using landfill materials for agriculture. Soil samples were collected from farmers' fields (7 samples) and from the Asmara landfill site (12 samples). The samples were analysed for major plant nutrients, heavy metals (Cd, Cr, Cu, Pb, Ni, Hg and Zn), and some physical properties. Nearly 65% (by weight) of the total landfill material mined from the landfill site constituted waste fractions of various substances. The remaining 35% was composed of soil-like materials, which are apparently used to fertilize agricultural soils. The average organic matter, total nitrogen, and available phosphorus contents of soils with landfill material measured 2.4%, 0.13%, and 45 mg kg(-1), respectively. However, soils without landfill material consisted of 1.1 % organic matter, 0.04% total N, and <40 mg kg(-1) of available P. Except for Hg, all the other heavy metals in the landfill site showed values above the permissible limits. In particular, the average concentrations of Cu (913 mg kg(-1)) and Pb (598 mg kg(-1)) in the landfill site were nine-fold and four-fold greater than the allowable limits, respectively. It is, therefore, suggested that composting fresh organic wastes should be considered and tested as an alternative material for fertilising agricultural soils and to maintain the quality of the environment.  相似文献   

12.
This article is intended to provide background information on leachate management in closed landfill sites based on a comparison of two landfill sites and the identification of leachate characteristics depending on the final cover and the season. Site S is older and has no final cover, while site J is younger and has final capping. The results of leachate analysis from the two landfills show that the biological oxygen demand to chemical oxygen demand ratio decreases below 0.1 to the range 0.05–0.07 for site S, whereas the ratio at site J was in the range 0.08–0.55. The inorganic nitrogen concentration was in the range 169.9–386.1 mg/l with an average of 265.2 mg/l at site S. Ammonia nitrogen accounted for 98.9% of the total nitrogen. The absence of a final cover on closed landfill sites may contribute to the stabilization of such landfills due to flushing. The nitrogen content at landfill S dropped in the summer, whereas it decreased in the fall at site J. A higher fluctuation in the pollutant levels of organic matters and nitrogen at the younger landfill site was observed, compared to the older site, even though the younger site had final capping. Therefore, intensive leachate management should be arranged at the early stages after closing for proper treatment. Specifically, nitrogen management of leachate is a critical factor in treatment operations.  相似文献   

13.
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.  相似文献   

14.
Spent coagulant in water supply plant sludge was extracted with H2SO4 and the efficiency of the reused coagulant was studied. The optimum pH values for coagulant extraction and clarification with the reused coagulant were 3.0–4.0 and about 6, respectively. In treating raw influent obtained from a sewage treatment plant and wastewater from a coastal landfill site, the removal of chemical oxygen demand (COD), total nitrogen, and total phosphorous with the recovered coagulant was higher than that with commercial aluminum sulfate or polyaluminum chloride. In addition, the sludge settling properties, the extra sludge mass formation, the supernatant quality, and the cost of reagents were also studied. The coagulant recovered from water supply plant sludge by H2SO4 extraction could be successfully reused for the clarification of domestic and food industry wastewaters.  相似文献   

15.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

16.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

17.
Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment.  相似文献   

18.
A survey was conducted between 2006 and 2008 in order to identify municipal solid waste (MSW) composition and its influence on leachate generation and to assess the amount of biogas yield from the Jebel Chakir landfill in Tunis City. The organic fraction was the predominant compound in the MSW, followed by paper, fine, plastic, leather, rubber, metal, textile, glass and ceramic. The average MSW moisture content varies from 60 % in the wet season to 80 % in the dry one. The recognised MSW composition is well representative if compared to that of cities in developing countries. A large leachate quantity is produced in the landfill of Jebel Chakir, despite the negative water balance of the site. Based on the annual MSW landfilled quantities and using the LandGEM model, the expected peak landfill gas (LFG) production is estimated to occur 1 year after the landfill closure with a rate of 3.53 × 107 m3/year. The analysis of the potential conversion of LFG to electric energy shows it at a total LFG-to-electricity energy of around 257 GWh with a heating value of 4,475 kcal/m3 based on an LFG collection efficiency of 33 % and energy efficiency of 33 % giving an economic feasibility for a 10 MW power plant.  相似文献   

19.
Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities.The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in the compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.  相似文献   

20.
In terms of resource recovery and environmental impact, melting furnace fly ash (MFA) is attracting much attention in Japan due to its high metal content. The study aims to obtain fundamental information on using a water extraction method not only to concentrate valuable rare metals but also to remove undesirable substances such as chlorine for their recovery from MFA. The composition and leaching characteristics of MFA was investigated. The results revealed that the metal content in MFA is nearly equal to raw ore quality. The content of Ag, In, Pd, Pb, and Zn is, in fact, higher than the content of raw ore. As for leaching behavior, Ag, Bi, In, Ga, Ge, Sb, Sn, and Te showed the lowest release at a neutral pH range. Pd was leached constantly regardless of pH, but its concentration was quite low. On the other hand, most of the Tl was easily leached, revealing that water extraction is not appropriate for Tl recovery from MFA. Major elements Cl, Ca, Na, and K, occupying about 70% of MFA, were mostly leached regardless of pH. Base metal elements Cu, Pb, and Zn showed minimum solubility at a neutral pH. The leaching ratio of target rare metal elements and base metal elements suggests that the optimal pH for water extraction is 8-10, at which the leaching concentration is minimized. The water extraction process removed most of the Cl, Ca, Na, and K, and the concentration of rare metals and base metals increased by four or five times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号