首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.  相似文献   

2.
Predicting soil erosion for alternative land uses   总被引:3,自引:0,他引:3  
The APEX (Agricultural Policy-Environmental eXtender) model developed in the United States was calibrated for northwestern China's conditions. The model was then used to investigate soil erosion effects associated with alternative land uses at the ZFG (Zi-Fang-Gully) watershed in northwestern China. The results indicated that the APEX model could be calibrated reasonably well (+/-15% errors) to fit those areas with >50% slope within the watershed. Factors being considered during calibration include runoff, RUSLE (Revised Universal Soil Loss Equation) slope length and steepness factor, channel capacity flow rate, floodplain saturated hydraulic conductivity, and RUSLE C factor coefficient. No changes were made in the APEX computer code. Predictions suggest that reforestation is the best practice among the eight alternative land uses (the status quo, all grass, all grain, all grazing, all forest, half tree and half grass, 70% tree and 30% grain, and construction of a reservoir) for control of water runoff and soil erosion. Construction of a reservoir is the most effective strategy for controlling sediment yield although it does nothing to control upland erosion. For every 1 Mg of crop yield, 11 Mg of soil were lost during the 30-yr simulation period, suggesting that expanding land use for food production should not be encouraged on the ZFG watershed. Grass species are less effective than trees in controlling runoff and erosion on steep slopes because trees generally have deeper and more stable root systems.  相似文献   

3.
Soil cores and suspended sediments were collected within the Old Woman Creek, Ohio (OWC) watershed following a thunderstorm and analyzed for 7Be, 137Cs, and 210Pb activities to compare the effects of till vs. no-till management on soil erosion and sediment yield. The upper reaches of the watershed draining tilled agricultural fields were disproportionately responsible for the majority of the suspended sediment load compared with lower in the watershed (2.0-7.0 metric tons/km2 [Mg/km2] vs. 1.2-2.6 Mg/km2). About 6 to 10 times more sediment was derived from the subbasins that are predominantly tilled (6.8-12.4 Mg/km2) compared with the subbasins undergoing no-till practices (0.5-1.1 Mg/km2). In undisturbed soils the 210Pb activities decreased with movement toward the bottom of the cores to the constant supported 210Pb value at a depth of about 10 cm. There was a subsurface maximum in 137Cs activity within the top 10 cm. In contrast, the 210Pb and 137Cs distributions in soils that are currently or were previously tilled were nearly homogeneous with depth, reflecting continuing or previous mixing by plowing. The activities of 210Pb and 7Be were linearly correlated and were higher in suspended sediments derived from no-till subbasins than those derived from tilled subbasins, indicating that the soil surface is the source of suspended sediment. This study demonstrates that no-till farming results in decreases in soil erosion and decreases in suspended sediment discharges and that those eroded sediments have a radionuclide signature corresponding to the tillage practice and the depth of erosion.  相似文献   

4.
Climate and land-use/cover changes (LUCC) influence soil erosion vulnerability in the semi-arid region of Alqueva, threatening the reservoir storage capacity and sustainability of the landscape. Considering the effect of these changes in the future, the purpose of this study was to investigate soil erosion scenarios using the Revised Universal Soil Loss Equation (RUSLE) model. A multi-agent system combining Markov cellular automata with multi-criteria evaluation was used to investigate LUCC scenarios according to delineated regional strategies. Forecasting scenarios indicated that the intensive agricultural area as well as the sparse and xerophytic vegetation and rainfall-runoff erosivity would increase, consequently causing the soil erosion to rise from 1.78 Mg ha?1 to 3.65 Mg ha?1 by 2100. A backcasting scenario was investigated by considering the application of soil conservation practices that would decrease the soil erosion considerably to an average of 2.27 Mg ha?1. A decision support system can assist stakeholders in defining restrictive practices and developing conservation plans, contributing to control the reservoir's siltation.  相似文献   

5.
Soil erosion is a severe problem for many developing regions that lack adequate infrastructure to combat the problem. The authors established a first-order method for prioritizing areas to be examined and remediated using preexisting data and expert knowledge where data are lacking. The Universal Soil Loss Equation was applied to the Rio Lempa Basin in Central America using geographic information systems and remote sensing technologies, and the estimated erosion rates were compared with sediment delivery ratios. Spatial analysis indicates that agriculture on very steep slopes contributes only a small fraction to the total estimated soil erosion, whereas agriculture on gentle and moderately steep slopes contributes a large fraction of the erosion. Although much of the basin is in El Salvador, the greatest estimated amount of erosion is from Honduras. Data quality and availability were impaired by a lack of coordination among agencies and across countries. Several avenues for improving the authors’ methods are described.  相似文献   

6.
金沙江流域水土流失与人类活动影响分析   总被引:6,自引:0,他引:6  
邓贤贵 《四川环境》1997,16(2):47-51
长江三峡水利枢纽工程能否正常发挥效益,泥沙是重要的制约因素之一,而水库的泥沙主要来自上游金沙江,其多年平均输沙量占入库寸滩站的527%。因此,本文对金沙江泥沙的地区组成、水土流失及人类活动影响等问题进行了深入的分析,并提出了防治对策。  相似文献   

7.
Soil erosion under different vegetation covers in the Venezuelan Andes   总被引:13,自引:0,他引:13  
This comparative study of soil erosion considered different environments in an ecological unit of the Venezuelan Andes. The soils belong to an association of typic palehumults and humic dystrudepts. Soil losses were quantified by using erosion plots in areas covered by four types of vegetation, including both natural and cultivated environments. The highest soil erosion rate evaluated corresponded to horticultural crops in rotation: reaching a value of 22 Mg ha–1 per year. For apple tree (Malus sylvestris Miller) plots, soil losses reached values of 1.96 Mg ha–1 per year. Losses from pasture (Pennisetum clandestinum Hochst. ex Chiov.) plots, without livestock grazing, were as high as 1.11 Mg ha–1 during the second year of the experiment. The highest soil losses generated from plots under natural forest were equal to 0.54 Mg ha–1 per year. Environmental factors such as total and effective rainfall, runoff, and some soil characteristics as those related to soil losses by water erosion were evaluated. The type of management applied to each site under different land use type and the absence of conservation practices explain, to a large extent, the erosive processes and mechanisms.  相似文献   

8.
The pi?on (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodlands of Bandelier National Monument are experiencing accelerated erosion. Earlier studies suggest that causes of these rapidly eroding woodlands are related to an unprecedented rapid transition of ponderosa pine (Pinus ponderosa C. Lawson) savanna to pi?on-juniper woodlands as a result of cumulative historical effects of overgrazing, fire suppression, and severe drought. To study the effectiveness of slash treatment in reducing accelerated erosion, we used sediment check dams to quantify sediment yield from twelve paired microwatersheds (300-1100 m2) within an existing paired water-shed study. Six of the twelve microwatersheds were located in a 41-ha (treatment) watershed with scattered slash treatment, whereas six microwatersheds were located in an adjacent 35-ha untreated (control) watershed. The primary purpose of our research was to quantify the rates of sediment yield between the treated and control microwatersheds. Sediment yield was measured from 15 individual storms during the months of June-September (2000 and 2001). In response to slash treatment, mean seasonal sediment yield for 2000 equaled 2.99 Mg/ha in the control vs. 0.03 Mg/ha in the treatment and 2.07 Mg/ha in the control vs. 0.07 Mg/ha in the treatment in 2001. The practice of slash treatment demonstrates efficacy in reducing erosion in degraded pi?on-juniper woodlands by encouraging herbaceous recovery. Our data show that slash treatment increases total ground cover (slash and herbaceous growth) beyond a potential erosion threshold. Restored pi?on-juniper woodlands, as the result of slash treatment, provide a forest structure similar to pre-grazing and pre-fire suppression conditions and decrease catastrophic fire hazard.  相似文献   

9.
Empirically based models are used worldwide to estimate soil erosion. The Revised Universal Soil Loss Equation (RUSLE) is one such model that has been intensively tested and validated under conditions in the United States. RUSLE estimates average soil loss as a function of five main factors: rainfall erosivity (R), soil erodibility (K), crop management (C), support practice (P), and topographic (LS) factors. This study investigated the application of RUSLE to Mediterranean conditions. The validation and calibration of RUSLE in the study area utilized field plots soil erosion measurements. The results found the RUSLE soil loss estimation to be three times the actual soil loss (7.8 and 2.6 Mg/ha, for RUSLE and actual measured soil loss, respectively). The difference between the RUSLE factors and the measured factors were responsible for the differences between the soil loss estimation by RUSLE and the measured soil loss. Specifically, the RUSLE K-factor showed three times the magnitude of the measured K-factor, the RUSLE C-factor underestimated the measured C-factor, and the RUSLE P-factor overestimated the measured P-factor by three times. Adjusting the RUSLE factors according to the measured ones increased the models predictability, whereas the adjusted-RUSLE soil loss estimation underestimated the measured soil loss by 14%. The adjustment of RUSLE, according to the prevailing conditions of the study area, increased the model efficiency three times (0.26 and 0.86 before and after adjustment of the mode,l respectively). For more accurate and reliable validation of the RUSLE under the Mediterranean conditions, it is advisable to conduct long-term soil loss experimentation and measurements.  相似文献   

10.
The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha?1 h?1), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha?1), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha?1) despite the high rainfall erosivity during that season (196.6 MJ mm ha?1 h?1). The predicted annual soil loss was 15.1 t ha?1, and the sediment amount delivery was 4,314 × 103 kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.  相似文献   

11.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

12.
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.  相似文献   

13.
Abstract: A study was conducted between September 2003 and September 2006 to obtain baseline sediment inventories and monitor sediment transport and storage along a 3.7 km length of the channel of Valley Creek within Valley Forge National Historical Park, Pennsylvania. Valley Creek is a tributary of the Schuylkill River and drains an urbanizing 60.6 km2 watershed that currently has 18% impervious land cover. Numerous field methods were employed to measure the suspended sediment yield, longitudinal profile, cross‐sections, banklines, and particle size distribution of the streambed. Suspended sediment yield for the watershed was measured at a USGS gage located just upstream of the park boundary between July 2004 and July 2005, the period corresponding to field surveys of bank erosion and channel change. The estimated suspended sediment yield of 95.7 t/km2/year is representative of a year with unusually high discharge, including a storm event that produced a peak of 78 m3/s, the second highest discharge on record for the USGS gage. Based on the median annual streamflow for the 24 years of record at the USGS gage from 1983 to 2006, the median annual sediment yield is estimated to be closer to 34 t/km2/year, considerably lower than median and mean values for other sites within the region. The mass of silt, clay, and fine sand derived from bank erosion along the 3.7 km study reach during the field survey period accounts for an estimated 2,340 t, equivalent to about 43% of the suspended sediment load. The mass of fine sediment stored in the bed along the study reach was estimated at 1,500 t, with about 330 t of net erosion during the study period. Although bank erosion appears to be a potentially dominant source of sediment by comparison with annual suspended sediment load, bed sediment storage and potential for remobilization is of the same order of magnitude as the mass of sediment derived from bank erosion.  相似文献   

14.
The primary objectives of this research were to determine SWAT model predicted reductions in four water quality indicators (sediment yield, surface runoff, nitrate nitrogen (NO(3)-N) in surface runoff, and edge-of-field erosion) associated with producing switchgrass (Panicum virgatum) on cropland in the Delaware basin in northeast Kansas, and evaluate switchgrass break-even prices. The magnitude of potential switchgrass water quality payments based on using switchgrass as an alternative energy source was also estimated. SWAT model simulations showed that between 527,000 and 1.27 million metric tons (Mg) of switchgrass could be produced annually across the basin depending upon nitrogen (N) fertilizer application levels (0-224 kg N ha(-1)). The predicted reductions in sediment yield, surface runoff, NO(3)-N in surface runoff, and edge-of-field erosion as a result of switchgrass plantings were 99, 55, 34, and 98%, respectively. The average annual cost per hectare for switchgrass ranged from about 190 US dollars with no N applied to around 345 US dollars at 224 kg N ha(-1) applied. Edge-of-field break-even price per Mg ranged from around 41 US dollars with no N applied to slightly less than 25 US dollars at 224 kg N ha(-1) applied. A majority of the switchgrass produced had an edge-of-field break-even price of 30 Mg(-1) US dollars or less. Savings of at least 50% in each of the four water quality indicators could be attained for an edge-of-field break-even price of 22-27.49 US dollars Mg(-1).  相似文献   

15.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

16.
Abstract: Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine‐grained sediments emanating from upland and channel sources. The overall objective of the research reported here was to determine the amount of fine sediment delivered to Lake Tahoe from each of the 63 contributing watersheds. The research described in this report used combinations of field‐based observations of channel and bank stability with measured and simulated data on fine‐sediment loadings to estimate fine‐sediment loadings from unmonitored basins throughout the Lake Tahoe Basin. Loadings were expressed in the conventional format of mass per unit time but also in the number of particles finer than 20 μm, the latter for future use in a lake‐clarity model. The greatest contributors of fine sediment happened to be those with measured data, not requiring extrapolation. In descending order, they are as follows: Upper Truckee River [1,010 tonnes per year (T/year)], Blackwood Creek (846 T/year), Trout Creek (462 T/year), and Ward Creek (412 T/year). Summing estimated values from the contributing watersheds provided an average, annual estimate of fine‐sediment (<0.063 mm) loadings to the lake of 5,206 T/year. A total of 7.79E + 19 particles in the 5‐20 μm fraction were calculated to enter Lake Tahoe in an average year with the Upper Truckee River accounting for almost 25% of the total. Contributions from Blackwood, Ward, Trout, and Third creeks account for another 23% of these very fine particles. Thus, these five streams making up about 40% of the basin area, account for almost 50% of all fine‐sediment loadings to the lake. Contribution of fine sediment from streambank erosion were estimated by developing empirical relations between measured or simulated bank‐erosion rates with a field‐based measure of the extent of bank instability along given streams. An average, annual fine‐sediment loading from streambank erosion of 1,305 T/year was calculated. This represents about 25% of the average, annual fine‐sediment load delivered to the lake from all sources. The two largest contributors, the Upper Truckee River (639 T/year) and Blackwood Creek (431 T/year), account for slightly more than 80% of all fines emanating from streambanks, representing about 20% of the fine sediment delivered to Lake Tahoe from all sources. Extrapolations of fine‐sediment loadings to the unmonitored watersheds are based on documented empirical relations, yet contain a significant amount of uncertainty. Except for those values derived directly from measured data, reported results should be considered as estimates.  相似文献   

17.
ABSTRACT: Relative yields of water, sediment, and salt (as indexed by electrical conductivity) were determined using simulated rainfall plots on three soil landform units on Mancos shale in the Price River Basin, Utah. Final infiltration rates on residual shale derived soils were between 0.13 and 0.50 cm/hr. No runoff was generated on cracked soils derived from aeolian deposits. Suspended sediment concentrations and elehcal conductivities were 180 and 68 times greater, respectively, for a steep dissected Mancos shale upland than for a low relief shale pediment and recent alluvial surface. Riling accounted for approximately 80 percent of the sediment produced on the steep, dissected shale surface. Channel scow and soil creep also produced measurable mounts of sediment. A survey of sediment basins in steep, dissected shale up lands indicated that an average of 1.25 Mg/ha/year of sediment is produced by that landform unit Carefully designed and located basin plugs can be used effectively to trap sediment, water, and salt from dissected shale uplands.  相似文献   

18.
RUSLE2 is the most used soil erosion model in practice. The rainfall-erosivity factor (R) is one of the six factors that is taken into consideration while estimating soil loss at a hill slope profile. R is determined using rainfall data collected from any region making use of basic rainstorm kinetic energy versus rainfall intensity relationships, which are variable for different geographic regions. Indian researchers used a specific erosivity model for building an iso-erosivity map for India. Many other erosivity models around the world are now available. However, it is not clear whether one can replace RUSLE2 recommended model by the ones derived in other geographic regions for using in Indian soil erosion studies. This has been examined here on south-western Indian data. Various models derived in diverse places were analyzed and compared with the RUSLE2 recommended relationship; and found that, a few could very well replace the usual RUSLE2 recommended expression.  相似文献   

19.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

20.
High intensity wildfire due to long-term fire suppression and heavy fuels buildup can render watersheds highly susceptible to wind and water erosion. The 2002 "Gondola" wildfire, located just southeast of Lake Tahoe, NV-CA, was followed 2 wk later by a severe hail and rainfall event that deposited 7.6 to 15.2 mm of precipitation over a 3 to 5 h time period. This resulted in a substantive upland ash and sediment flow with subsequent down-gradient riparian zone deposition. Point measurements and ESRI ArcView were applied to spatially assess source area contributions and the extent of ash and sediment flow deposition in the riparian zone. A deposition mass of 380 Mg of ash and sediment over 0.82 ha and pre-wildfire surface bulk density measurements were used in conjunction with two source area assessments to generate an estimation of 10.1 mm as the average depth of surface material eroded from the upland source area. Compared to previous measurements of erosion during rainfall simulation studies, the erosion of 1800 to 6700 g m(-2) mm(-1) determined from this study was as much as four orders of magnitude larger. Wildfire, followed by the single event documented in this investigation, enhanced soil water repellency and contributed 17 to 67% of the reported 15 to 60 mm ky(-1) of non-glacial, baseline erosion rates occurring in mountainous, granitic terrain sites in the Sierra Nevada. High fuel loads now common to the Lake Tahoe Basin increase the risk that similar erosion events will become more commonplace, potentially contributing to the accelerated degradation of Lake Tahoe's water clarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号