首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were cooking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.  相似文献   

2.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in Daya Bay, China. The total concentration of the 16 USEPA priority PAHs in surface sediments ranged from 42.5 to 158.2 ng/g dry weight with a mean concentration of 126.2 ng/g. The spatial distribution of PAHs was site-specific and combustion processes were the main source of PAHs in the surface sediments. Total 16 priority PAH concentration in the cores 8 and 10 ranged from 77.4 to 305.7 ng/g and from 118.1 to 319.9 ng/g respectively. The variation of the 16 PAH concentrations in both cores followed the economic development in China very well and was also influenced by input pathways. Some of the PAHs were petrogenic in core 8 while pyrolytic source was dominant in core 10. In addition, pyrolytic PAHs in both cores were mainly from the coal and/or grass and wood combustion.  相似文献   

3.
Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution ≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources.

Implications: Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter in determining the source with the prevailing contribution. Mobile vehicle sources showed a higher contribution for species with four or fewer benzene rings, whereas sugarcane burning contributed more for species with five or more benzene rings. Results from this study encourage more control for sugarcane burns and help to better manage authorization of the sugarcane burning incidents and more restrictive transportation plans to limit PAH emissions from mobile vehicles.  相似文献   

4.
PM2.5 and size-segregated aerosols were collected in May 2002 as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA. Aerosol organic composition was used to estimate sources of a series of alkanes and polycyclic aromatic hydrocarbons (PAHs) using chemical indices, hierarchical cluster analysis (HCA) and a chemical mass balance receptor model (CMB). Aerosols were collected on quartz fiber filters (QFF) using a PM2.5 high volume sampler and on aluminum foil discs using a Micro-Orifice Uniform Deposit Impactor (MOUDI, 50% aerodynamic cut diameters were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.315 and 0.171 μm). Target compounds included alkanes and PAHs and were solvent extracted using a mixture of dichloromethane, acetone and hexane, concentrated and then analyzed using a gas chromatograph/mass spectrometer (GC/MS). The target compounds in PM2.5 were dominated by six sources during the study period: mobile sources (39±5%), coal burning (33±5%), biogenic primary emission (20±2%), oil combustion (5±2%), biomass burning (1.0±0.3%) and an unidentified source (3±2%). Results obtained from the chemical indices, HCA and CMB were in very good agreement with each other. PAH size distributions are presented for days dominated by a same source. Seventy-five percent and 50% of the PAH were found below 1.8 and 0.56 μm, respectively (monthly PAH geometric diameters averaged 0.43 μm). Coarse size PAHs were observed on 1 day (15 May) and were correlated with nitrate and sodium size distribution. It is hypothesized that the PAHs, sodium and nitrate were internally mixed and that the PAHs deposited onto a pre-existing marine aerosol. This transfer process has significant implications for PAH deposition and lifetime and warrants further study.  相似文献   

5.
This study investigated the levels, sources and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in two sediment cores that were collected along the Huaxi Reservoir. The spatial distributions and residue levels of the 16 priority PAHs in the sediments from the Huaxi Reservoir were analyzed for their potential ecological risk, source apportionment and contribution to the total PAH residue. The concentration level of the total PAHs (TPAHs) was in the range 1805 ng·g?1 to 20023 ng·g?1 based on dry weight, and the content of PAHs in the Huaxi Reservoir exhibited a gradual upward trend. The PAH congener ratios fluoranthene/(fluoranthene + pyrene) and indeno[1, 2, 3-cd]pyrene/(indeno[1, 2, 3-cd]pyrene + benzo[g, h, i]perylene) were used to identify the source. The main source of the low molecular weight PAHs was wood and coal combustion, whereas the high molecular weight PAHs were primarily from petroleum combustion sources. The results of an ecological risk assessment demonstrated that ACE poses a potential ecological risk, while FLU, NAP, ANT, BaP, DBA, PHEN and PYR can have serious ecological risks.  相似文献   

6.
This paper describes the first results of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in sediment cores of Admiralty Bay, Antarctica. These markers were used to assess the local input of anthropogenic materials (particulate and organic compounds) as a result of the influence of human occupation in a sub-Antarctic region and a possible long-range atmospheric transport of combustion products from sources in South America. The highest SCPs and PAHs concentrations were observed during the last 30 years, when three research stations were built in the area and industrial activities in South America increased. The concentrations of SCPs and PAHs were much lower than those of other regions in the northern hemisphere and other reported data for the southern hemisphere. The PAH isomer ratios showed that the major sources of PAHs are fossil fuels/petroleum, biomass combustion and sewage contribution generally close to the Brazilian scientific station.  相似文献   

7.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

8.
Sediment cores taken from Taihu Lake, East China were analyzed for polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated biphenyl ethers (PBDEs). The results showed a general sharp increase of HCH, DDT, PAH and PBDE concentrations in the surface layers, corresponding to a sedimentation time of 1980 and 1990 onward in the Meiliang Bay and Xukou Bay, respectively. The source of PAHs has largely transferred from petrogenic to pyrogenic origin, and good relationships were observed between sediment PAH concentrations and the regional gross domestic product. The sharp increase of DDTs in recent years may be related to the mobilization and migration of these chemicals from surface soil to lake sediment, as a result of enhanced soil run-off due to large scale land transform, as well as the contribution of current usage of dicofol and DDT-containing anti-fouling paints.  相似文献   

9.
Ross JR  Oros DR 《Chemosphere》2004,57(8):909-920
The composition of PAH in surface waters was examined over a range of spatial and temporal scales to determine distributions, trends, and possible sources. Water samples were collected from 1993 to 2001. PAH in organic extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) and 25 individual target PAH summed to get the total PAH concentration in each water sample. The distribution of median total PAH concentration by estuary segments was Extreme South Bay (120 ng l(-1)) > South Bay (49 ng l(-1)) > North Estuary (29 ng l(-1)) > Central Bay (12 ng l(-1)) > Delta (7 ng l(-1)). Overall, total PAH concentrations were significantly higher in the Extreme South Bay compared to all other segments, and the Central Bay and Delta were significantly lower than all other segments (Kruskal-Wallis, H = 157.27, df = 4, p < 0.0005). This distribution reflects the large urbanized and industrialized areas that border the southern portions of the estuary and the less populated and rural areas that surround the Delta. Temporal trend analysis showed a statistically significant temporal trend in total PAH concentration at only one of the 18 sampling stations situated throughout the estuary (San Jose, significant decrease, p = 0.031, r(2) = 0.386, n = 12). PAH isomer pair ratio analysis showed that PAH in estuary waters were derived primarily from combustion of fossil fuels/petroleum (possible PAH source contributors include coal, gasoline, kerosene, diesel, No. 2 fuel oil, and crude oil) and biomass (possible contributors include wood and grasses), with lesser amounts of PAH contributed from direct petroleum input.  相似文献   

10.
Spatial distribution and compositional characteristics of PAHs, DDTs and PCBs in surface sediments from Bohai Sea were investigated. Proportion of LMW PAHs at Jinzhou Bay was significant, due probably to the petrogenic sources from neighboring oil wells and plants, while HMW PAHs were dominant in the other sea areas, inferred pyrogenic origins mainly from coal or petroleum combustion. The average ERL quotient for the PAH species in Qinhuangdao and Liaodong Bay indicated relatively stronger potential ecological risk. The concentration ratios of DDT to metabolites (DDD + DDE) exceeded 1.0 in the coastal areas of Qinhuangdao, Liaodong Bay and Bohai Bay, demonstrated some recent inputs of DDT nearby, and DDD as the major degradation product. The concentrations of PCBs were generally low, however, the contents of DDTs were greater than the ERL guidelines in the coastal areas of Qinhuangdao, Liaodong Bay and Bohai Bay, and suggested the potential ecological risk.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) seasonal variation and sources in Ubeji, Ifie, and Egbokodo Creeks of the Niger Delta, Nigeria, were predicted using diagnostic ratios (DRs) of parent PAHs (Phe/Phe + Ant; Flu/Flu + Pyr; BaA/BaA + Chry, and Ind/Ind + BghiP) and principal component analysis (PCA). A total of 222 sediment core samples were collected during the wet (August 2010) and the dry seasons (January 2011). The samples were dried and Soxhlet extracted; sample extracts were fractionated and analyzed by gas chromatography/flame ionization detection (GC/FID) to identify individual PAHs. The diagnostic PAH ratios revealed that PAHs in the sediment cores at the three creeks, in both seasons, mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood-burning, coal combustion, diesel, gasoline-powered vehicular emissions, and petroleum combustion were the dominant contributors of PAHs sources at the sampling location. This study provided information on the origin and sources of PAHs in sediment cores, which may be useful for regulatory actions, environmental quality management, contamination history, and environmental forensic studies.  相似文献   

12.
应用化学质量平衡模型解析烟台市污染源的排放贡献率   总被引:8,自引:0,他引:8  
根据烟台地区污染排放特点,应用化学质量平衡模型(CMB8)进行污染源解析分析,得出每个污染源对于受体地区颗粒物体样本的排放贡献率。最终的模型结果显示,建筑尘和居民烯煤锅炉排放,海洋尘和冶炼厂排放对于大气环境污染也有一定的贡献,以上分析可以为城市污染源治理提供一定的依据。  相似文献   

13.
Bixiong Y  Zhihuan Z  Ting M 《Chemosphere》2006,64(4):525-534
A total of 188 surface soil samples were collected from different types of utilization soils in Tianjin area. Factor analysis and scatter point surface tension spine function interpolation were used to analyze types and spatial distributions of PAH sources of surface soils in Tianjin area. The results showed that most pollution sources were mixed sources including coal burning and petroleum spill. Mixed sources occupied 56.12%, 58.96%, 46.45% and 59.50% in farmland of wastewater irrigation, common farmland, wild land and city greenbelt, respectively. Other pollution sources such as vehicle emission, biogenic conversion, wood burning and natural gas combustion were also significant. The spatial distributions of pollution sources were closely related to geographic location, geographic condition and living habit of indigenes.  相似文献   

14.
A source-resolved model has been developed to predict the contribution of different sources to primary organic aerosol concentrations. The model was applied to the eastern US during a 17 day pollution episode beginning on 12 July 2001. Primary organic matter (OM) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. Individual emission inventories are developed for each source and a three-dimensional chemical transport model (PMCAMx) is used to predict the primary OM and EC concentrations from each source. The source-resolved model is simple to implement and is faster than existing source-oriented models. The results of the source-resolved model are compared to the results of chemical mass balance models (CMB) for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for some of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. It also appears that the OM and EC emissions from wood burning and off-road diesel are too high in the Northeastern US. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OM and EC are discussed along with problems in the current emission inventory for certain sources.  相似文献   

15.
In this study, concentrations, distribution between different phases, transition along the Middle and Lower reaches of the Yellow River and possible sources of PAHs were assessed. Results demonstrated that the relative proportions of 15 PAHs in all stations of the main River were similar, with concentrations of benzo[a]pyrene all above drinking water standards in most of the stations sampled. PAHs concentrations in tributaries were higher than those in the corresponding sites in the main River. PAHs concentrations of suspended particles were mainly correlated with contents of total organic carbon. However, PAHs concentrations in sediments were mainly correlated to the volume of particles with size smaller than 0.01 mm. The distribution of PAHs in all media sampled indicated that sediments could act as a sink/source for PAHs in different sections and source analysis revealed that PAHs mainly originated from coal burning, although in some tributaries PAH inputs could come from combustion of petroleum.  相似文献   

16.
The assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface sediments from the Yangtze estuary which is a representative area affected by anthropogenic activity (rapid industrialization, high-population density, and construction of dams upstream) in the world was systematically conducted. Fifty-one samples were analyzed by high-performance liquid chromatography (HPLC). The ??PAHs in all sediments varied from 76.9 to 2,936.8?ng?g?1. Compared with other estuaries in the world, the PAH levels in the Yangtze estuary are low to moderate. Phenanthrene, acenaphthylene, fluoranthene, and pyrene were relatively abundant. The ??PAH levels and composition varied obviously in different estuarine zones due to different sources. The highest ??PAHs concentration was observed in the nearshore of Chongming Island. The PAH composition showed that four to six ring PAHs were mainly found in the nearshore areas, while two to three ring PAHs were in the farther shore zones. The PAHs in the Yangtze estuary were derived primarily from combustion sources. A mixture of petroleum combustion and biomass combustion mainly from coal combustion and vehicle emission was the main source of PAHs from the nearshore areas, while the spill, volatilization, or combustion of petroleum from shipping process and shoreside discharge were important for PAHs in the farther shore areas. The result of potential ecotoxicological risk assessment based on sediment quality guidelines indicated low PAH ecological risk in the Yangtze estuary. The study could provide foundation for the protection of water quality of the Yangtze estuary by inducing main sources input.  相似文献   

17.
Manoli E  Kouras A  Samara C 《Chemosphere》2004,56(9):867-878
Polycyclic aromatic hydrocarbons (PAHs) adsorbed to ambient PM(10) were determined at three sites in Thessaloniki, northern Greece, during the period June 1997-July 1998. Ambient PAH profiles exhibited significant seasonal and spatial variations. Source PAH profiles were obtained for a number of urban, industrial and geological sources including cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration, oil burning, non-catalyst equipped passenger cars, diesel fueled taxies and buses, paved road dust and soil dust. Principal component analysis (PCA) and diagnostic ratios were employed to compare ambient and source PAH profiles in an attempt to recognize compositional patterns. Similarities between the ambient PAH profiles and the profiles of certain sources, such as vehicular emissions, oil burning and metal industries, were identified.  相似文献   

18.
Particulate samples of agricultural waste burning, straw burning, forest leaf burning, heavy duty truck emission, paved road dust, soil, agricultural soil, coal, electrostatic precipitator ash, and emission from stack power plant were collected from the Mae Moh area. Chemical compositions of sampling filters were analysed to determine the particulate matter source profiles. The analysis included ICP-MS for elemental compositions, ion chromatography for water soluble ions and CHNS/O for carbon species. In all biomass burning profiles organic carbon (OC) was higher during smouldering phase, while elemental carbon (EC) was higher during flaming phase. Results relating to biomass emission during flaming stage showed increase in K+. Organic and elemental carbons were the most abundant in biomass burning and truck exhaust. The abundance of EC was much lower, and the abundance of OC was much higher in biomass burning relative to truck exhaust emission. Al, K, Mg, Ca, and Fe were presented with high abundance in road dust, soil, coal, fly ash and stack samples. The differences in chemical compositions were not sufficient to distinguish geological material and fugitive dust sources. Fly ash profile differed from the others since OC and EC were not detected. Na and Zn were most abundant in stack samples. These findings served as a starting point for source contribution study. For future application of source apportionment using the CMB modelling technique, these source profiles should be appropriately grouped and selected to generate reliable outcomes.  相似文献   

19.
The purpose of this study was to characterize the emissions of a large number of chemical compounds emitted from birch wood combustion in a wood stove. Birch wood is widely used as fuel in Swedish household appliances. The fuel load was held constant during six experiments.Particles <2.5 μm in diameter were collected and the size distribution of the particles was measured. The results were compared to the size distribution in road traffic emissions. It could be seen that the number distribution differed between the sources. In traffic exhaust, the number of particles maximized at 20 nm, while the number distribution from wood burning ranged from 20 to 300 nm. The ratio K/Ca on particles was found to be significantly different in wood burning compared to road dust, range 30–330 for the former and 0.8±0.15 for the latter. The source profile of common elements emitted from wood burning differed from that found on particles at a street-level site or in long-distance transported particles.The ratio toluene/benzene in this study was found to be in the range 0.2–0.7, which is much lower than the ratio 3.6±0.5 in traffic exhaust emissions.Formaldehyde and acetone were the most abundant compounds among the volatile ketones and aldehydes. The emission factor varied between 180–710 mg/kg wood for formaldehyde and 5–1300 mg/kg wood for acetone. Of the organic acids analyzed (3,4,5)-trimethoxy benzoic acid was the most abundant compound. Of the PAHs reported, fluorene, phenanthrene, anthracene, fluoranthene and pyrene contribute to more than 70% of the mass of PAH. Of the elements analyzed, K and Si were the most abundant elements, having emission factors of 27 and 9 mg/kg wood, respectively.Although fluoranthene has a toxic equivalence factor of 5% of benzo(a)pyrene (B(a)P), it can be seen that the toxic potency of fluoranthene in wood burning emissions is of the same size as B(a)P. This indicates that the relative carcinogenic potency contribution of fluoranthene in wood smoke would be about 40% of B(a)P.  相似文献   

20.
This study reports a general assessment of the organic composition of the PM2.5 samples collected in the city of Augsburg, Germany in a summer (August-September 2007) and a winter (February-March 2008) campaign of 36 and 30 days, respectively. The samples were directly submitted to in-situ derivatisation thermal desorption gas chromatography coupled with time of flight mass spectrometry (IDTD-GC-TOFMS) to simultaneously determine the concentrations of many classes of molecular markers, such as n-alkanes, iso- and anteiso-alkanes, polycyclic aromatic hydrocarbons (PAHs), oxidized PAHs, n-alkanoic acids, alcohols, saccharides and others.The PCA analysis of the data identified the contributions of three emission sources, i.e., combustion sources, including fossil fuel emissions and biomass burning, vegetative detritus, and oxidized PAHs. The PM chemical composition shows seasonal trend: winter is characterized by high contribution of petroleum/wood combustion while the vegetative component and atmospheric photochemical reactions are predominant in the hot season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号