首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased interest in measuring radionuclides and radon concentrations in fly ash, cement and other components of building products is due to the concern of health hazards of naturally occurring radioactive materials (NORM). The current work focuses on studying the influence of fly ash (FA) on radon-exhalation rate (radon flux) from cementitious materials. The tests were carried out on cement paste specimens with different FA contents. The first part of the paper presents the scientific background and describes the experiments, which we designed for testing the radon emanation of the raw materials used in the preparation of the cement-FA pastes. It is found that despite the higher (226)Ra content in FA (more than 3 times, compared with Portland cement) the radon emanation is significantly lower in FA (7.65% for cement vs. 0.52% only for FA).  相似文献   

2.
The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.  相似文献   

3.
Coal and its by products often contain significant amounts of radionuclides, including uranium which is the ultimate source of the radioactive gas radon. Burning of coal and the subsequent emission to the atmosphere cause the re-distribution of toxic trace elements in the environment. Due to considerable economic and environmental importance and diverse uses, the collected fly ash has become a subject of worldwide interest in recent years. In the present study, radon exhalation rate and the activity concentration of (238)U, (232)Th and (40)K radionuclides in fly ash samples from Durgapur thermal power plant (WB) have been measured by "Sealed Can technique" using LR-115 type II detectors and a low level NaI (Tl) based gamma ray spectrometer, respectively. Radon exhalation rate varied from 360.0 to 470.0 mBq m(-2)h(-1) with an average value of 406.8 mBq m(-2)h(-1). Activity concentrations of (238)U ranged from 84.8 to 126.4 Bq kg(-1) with an average value of 99.3Bqkg(-1), (232)Th ranged from 98.1 to 140.5 Bq kg(-1) with an average value of 112.9 Bq kg(-1) and (40)K ranged from 267.1 to 364.9 Bq kg(-1) with an average value of 308.9 Bq kg(-1). Radium equivalent activity obtained from activity concentrations is found to vary from 256.5 to 352.8 Bq kg(-1) with an average value of 282.5 Bq kg(-1). Absorbed gamma dose rates due to the presence of (238)U, (232)Th and (40)K in fly ash samples vary in the range 115.3-158.5 nGy h(-1) with an average value of 126.4 nGy h(-1). While the external annual effective dose rate varies from 0.14 to 0.19 mSv y(-1) with an average value of 0.15 mSv y(-1), effective dose equivalent estimated from exhalation rate varies from 42.5 to 55.2 microSv y(-1) with an average value of 47.8 microSv y(-1). Values of external hazard index H(ex) for the fly ash samples studied in this work range from 0.69 to 0.96 with a mean value of 0.77.  相似文献   

4.
Alkali ash material (AAM) concrete is a unique material that is sustainable and cost-effective because it utilises waste fly ash, and has properties superior to other concrete products. The AAM concrete described here is produced from the addition of inexpensive chemicals to fly ash. AAM can be used to create a wide range of materials including high performance concrete (HPC-AAM) and lightweight (LW-AAM). The high performance AAM provides rapid strength gain along with high ultimate strengths of more than 110 MPa (16000 psi). LW-AAM can produce materials with densities ranging from 1200 to 2200 kg/m3 and compressive strengths from 2 (290 psi) to 65 MPa (9500 psi). Both HPC-AAM and LW-AAM have far better environmental resistance than Portland cement concrete, resisting attack from sulphuric acid (H2SO4), hydrochloric acid (HCl) and organic acids. AAMs resists freeze–thaw attack and high abrasion, possesses low chloride permeability and does not exhibit alkali silica reactivity.  相似文献   

5.
Radon mass exhalation rate of soil samples was measured using an exhalation chamber of 10 dm(3) volume and a Lucas cell. The results show that mass of sample, grain size and water content influence the radon mass exhalation rate. For soil of (226)Ra activity concentration about 2500 Bq kg(-1) and samples within the range from 0.20 kg to 0.50 kg, the radon mass exhalation rate values are higher than those for samples of other masses. The observed radon exhalation rate is an inverse function of the average grain size. At the water content about 6% by weight, the radon mass exhalation rate reaches maximum, then it decreases with both increasing and decreasing of the water content in the sample.  相似文献   

6.
Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series.  相似文献   

7.
The concentration of radon-222 has been monitored since 1995 in the atmosphere of a 2 m transverse dimension, 128 m long, dead-end horizontal tunnel located in the French Alps, at an altitude of 1600 m. Most of the time, the radon concentration is stable, with an average value ranging from 200 Bq m(-3) near the entrance to about 1000 Bq m(-3) in the most confined section, with an equilibrium factor between radon and its short-lived decay products varying from 0.61 to 0.78. However, radon bursts are repeatedly observed, with amplitudes reaching up to 36 x 10(3) Bq m(-3) and durations varying from one to several weeks, with similar spatial variations along the tunnel as the background concentration. These spatial variations are qualitatively interpreted in terms of natural ventilation. Comparing the radon background concentration with the measured radon exhalation flux at the wall yields an estimate of 8+/-2 x 10(-6) s(-1) (0.03+/-0.007 h(-1)) for the ventilation rate. The hypothesis that the bursts could be due to transient changes in ventilation can be ruled out. Thus, the bursts are the results of transient increased radon exhalation at the walls, that could be due to meteorological effects or possibly combined hydrological and mechanical forcing associated with the water level variations of the nearby Roselend reservoir lake. Such studies are of interest for radiation protection in poorly ventilated underground settings, and, ultimately, for a better understanding of radon exhalation associated with tectonic or volcanic processes.  相似文献   

8.
Environment, Development and Sustainability - Coal fly ash and granulated ground blast furnace slag (GGBS) are more widely used as supplementary cementitious materials in cement production. This...  相似文献   

9.
This paper focuses on the valuable utilisation of spray dryer ash (SDA) and investigates its performance in concrete for structural applications. Based on the challenges associated with the disposal of coal combustion products (including SDA) and the economic costs linked to cement production, this research seeks to provide an environmentally friendly and more cost-effective concrete product by utilising SDA in partial replacement of cement in concrete. With the exception of a relatively high-sulphur content, SDA exhibits very useful properties that are closely related to Class C fly ash and Portland cement.

Experimental tests were carried out to determine the effect of SDA replacement of Portland cement (ranging from 0 to 50% replacement) on the compressive strength, bond strength, freeze-thaw performance and corrosion resistance of concrete. The addition of SDA in non-air entrained concrete provided a general increase in its strength with optimal limits ranging between 25 and 35% replacement. The addition of SDA produced a negligible effect on the freeze-thaw durability of the concrete (air entrained). Results for corrosion performance were not as definitive, but indicate that the use of SDA does not significantly change the likelihood of reinforcing bar corrosion.  相似文献   

10.
Cement production accounts for approximately 5% of total global CO2 emissions from all human activities. In addition, the consumption of virgin aggregates for concrete infrastructure has created virgin material scarcity issues in many areas of the USA. High-performance green concrete (HPGC) with fly ash and recycled aggregates can help reduce the demand for material inputs and reduce pollution outputs associated with bulk material flow of urban concrete. Structural and durability tests showed that HPGC containing fly ash and 50% recycled aggregate (100% of the coarse aggregate fraction) performed equally or better than 100% ordinary Portland cement concrete with the same cementitious content. Durability improvements were more significant with Class F than Class C fly ash. For both Class F and Class C fly ash, greater per cent replacement of Portland cement with fly ash led to slower and lower strength gain, but still within acceptable strength criteria for Colorado Department of Transportation Class B concrete. This paper quantifies the sustainability of HPGC in urban infrastructure by addressing structural performance, environmental, economic and resource depletion impacts.  相似文献   

11.
Phosphorus removal by fly ash   总被引:3,自引:0,他引:3  
The aim of this work was to investigate the possible use of fly ash generated from thermic power stations in the removal of phosphorus contained in aqueous solutions. A series of batch tests were conducted and the influence of temperature, phosphate concentration, and fly ash dosage on phosphate removal were investigated. The effect of adsorption dosage was not significant at any temperature applied. Phosphate removal in excess of 99% was obtained in these studies. Maximum removals were achieved at 40°C. The tests were also carried out on a continuous basis in an adsorption column. It was found that fly ash is an efficient adsorbent for phosphate removal. This was expected due to the high concentration of calcite present in the fly ash (338 g/kg). The phosphate removal decreased to 80.4% at the end of 72 h.  相似文献   

12.
Disposal of sewage sludge from waste water treatment plants is a serious environmental problem of increasing magnitude. Waste water treatment generates as much as 70 g of dry solids per capita per day. Although one of the disposal solutions for this waste is through incineration, still almost 30% of sludge solids remain as ash. This paper presents results related to reuse of sewage sludge ash in concrete. The sludge was characterised for chemical composition (X-ray flourescence analysis), crystalline phases (X-ray diffraction analysis) and pozzolanic activity. The effects of incineration on crystal phases of the dry sludge were investigated. Two water/cement (W/C) ratios (0.55 and 0.45) and three sludge ash percentages (5%, 10% and 20%) per cement mass were used as filler. The mechanical performance of sewage sludge ash concrete (SSAC) at different curing ages (3, 7, 28 and 90 days) was assessed by means of mechanical tests and capillary water absorption. Results show that sewage sludge ash leads to a reduction in density and mechanical strength and to an increase in capillary water absorption. Results also show that SSAC with 20% of sewage sludge ash and W/C = 0.45 has a 28 day compressive strength of almost 30 MPa. SSAC with a sludge ash contents of 5% and 10% has the same capillary water absorption coefficient as the control concrete; as for the concrete mixtures with 20% sludge ash content, the capillary water absorption is higher but in line with C20/25 strength class concretes performance.  相似文献   

13.
The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.  相似文献   

14.
Radon exhalation from building materials for decorative use   总被引:2,自引:0,他引:2  
Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m−2 d−1. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m−2 d−1 for slate tiles and 42 Bq m−2 d−1 for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m−2 d−1, it would contribute only 18 Bq m−3 to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.  相似文献   

15.
We propose a new methodology for predicting areas with a strong potential for radon (222Rn) exhalation at the soil surface. This methodology is based on the Rn exhalation rate quantification, starting from a precise characterisation of the main local geological and pedological parameters that control the radon source and its transport to the soil/atmosphere interface. It combines a cross mapping analysis of these parameters into a geographic information system with a model of the Rn vertical transport by diffusion in the soil. The rock and soil chemical and physical properties define the entry parameters of this code (named TRACHGEO) which calculates the radon flux density at the surface. This methodology is validated from in situ measurements of radon levels at the soil/atmosphere interface and in dwellings. We apply this approach to an area located in western France and characterised by a basement displaying a heterogeneous radon source potential, as previously demonstrated by lelsch et al. (J. Environ. Radioactivity 53(1) (2001) 75). The new results obtained show that spatial heterogeneity of pedological characteristics in addition to basement geochemistry--must be taken into account to improve the mapping resolution. The TRACHGEO forecasts explain the Rn exhalation variability on a larger scale and in general correlate well with in situ observations. Moreover, the radon-prone sectors identified by this approach generally correspond to the location of the dwellings showing the highest radon concentrations.  相似文献   

16.
High concentrations of natural radionuclides in building materials can result in high dose rates indoors, from both internal and external exposure. In dose calculations, the main radionuclides of interest are 226Ra, 232Th and 40K. Usually much attention is paid to 226Ra due to 222Rn exhalation and the subsequent internal exposure. Other radionuclides of the uranium series such as 238U and 210Pb, emitting low energy photons are not usually determined and an assumption of radioactive equilibrium is made. The above assumption is seldom checked mainly because of the difficulties in the gamma-spectroscopic analysis of low energy photons. For the determination of radionuclides emitting low-energy photons, in samples like building materials where intense self-absorption of the photons exists, a method for self-absorption correction has been developed. The method needs as input the linear attenuation coefficient mu for the material under analysis. This paper presents: 1. Correlations in the form mu = f(rho,E) developed for the estimation of the linear attenuation coefficient mu (cm(-1)), as a function of the material packing density p (g cm(-3)) and the photon energy E (keV), for building materials as well as other materials of environmental importance. 2. Gamma-spectroscopic analysis techniques used for the determination of 238U, 226Ra, 210Pb, 232Th and 40K in environmental samples, together with the results obtained from the analysis of building materials used in Greece, and industrial by-products used for the production of building materials. Among the techniques used, one is based on the direct determination of 226Ra and 235U from the analysis of the multiplet photopeak at approximarely186 keV. 3. Results from radon exhalation measurements of building materials such as cement and fly-ash and building structures conducted in the radon chambers in our Laboratory. Based on the above results, dosimetric calculations are also reported.  相似文献   

17.
A revegetation trial was conducted to evaluate the feasibility of growing a legume species, Prosopis juliflora L., on fly ash ameliorated with combination of various organic amendments, blue-green algal biofertilizer and Rhizobium inoculation. Significant enhancements in plant biomass, photosynthetic pigments, protein content and in vivo nitrate reductase activity were found in the plants grown on ameliorated fly ash in comparison to the plants growing in unamended fly ash or garden soil. Higher growth was obtained in fly ash amended with blue-green algae (BGA) than farmyard manure or press mud (PM), a waste from sugar-processing industry, due to the greater contribution of plant nutrients, supply of fixed nitrogen and increased availability of phosphorus. Nodulation was suppressed in different amendments of fly ash with soil in a concentration-duration-dependent manner, but not with other amendments. Plants accumulated higher amounts of Fe, Mn, Cu, Zn and Cr in various fly ash amendments than in garden soil. Further, inoculation of the plant with a fly ash tolerant Rhizobium strain conferred tolerance for the plant to grow under fly ash stress conditions with more translocation of metals to the above ground parts. The results showed the potential of P. juliflora to grow in plantations on fly ash landfills and to reduce the metal contents of fly ash by bioaccumulation in its tissues.  相似文献   

18.
In controlling the natural radiation exposure for the residents of dwellings, it is necessary to determine the levels of natural radioactivity (external exposure) and radon exhalation rate (internal exposure) from building materials. Using a high-resolution gamma ray spectrometry system, the activity concentration of natural radionuclides was measured. The radon exhalation rate was measured by hermetically closing the sample in a container and following the radon activity growth as a function of time. Three different methods were applied in order to find the most appropriate, i.e. that with the less uncertainty for the less exposure time. Typical building materials were analyzed in order to examine the external and internal exposures. In addition, the total annual effective dose was evaluated for the residents of a typical Greek dwelling.  相似文献   

19.
Fly ash samples were collected from the electrostatic precipitator of a coal-fired power plant in Hong Kong. The particles of the respirable range (smaller than 10 μm) were divided into 4 groups according to their particle size (mass median aerodynamic diameters). The surface morphology and the metal contents (Fe, Mn, Al and Zn) of fly ash particles were examined by a scanning electron microscope and an inductively coupled plasma spectrophotometer, respectively. The particles were very heterogenous in size and shape as well as the concentration of metals. The cytotoxicity of these four groups of fly ash particles was evaluated using an in vitro rat alveolar macrophages culture assay. The viability of alveolar macrophages was lower when incubated with smaller size particles. This relationship was also reflected by the damage of the surface morphology of the cells and the release of cytoplasmic (lactate dehydrogenase) and lysosomal (acid phosphatase and β-glucuronidase) marker enzymes into the culture media.  相似文献   

20.
ABSTRACT

This paper presents a concept of reusing spent coffee ground (CG) as a construction material. Through creating a CG-filled Alkali Activated Material (AAM) with industrial wastes such as fly ash (FA) and slag (S), a strong recycled material was synthesised and found suitable to be used as a road subgrade fill material. Potential groundwater contamination tests were done in accordance to the Australian Standard Leaching Procedure (ASLP). The environmental analysis done on this green material shows that albeit being composed of various industrial wastes and chemicals, CG-filled AAMs in the ground will not cause adverse environmental impacts to surrounding soils and groundwater. Heavy metals and cyanide leached from the AAMs were well below hazardous thresholds. Comparing the carbon footprint of CG, it is found that recycling CG into a construction material would reduce the nett global carbon emission by reducing dependency on quarried material. Cost analyses done on CG-filled AAMs show that these AAMs are expensive to produce relative to traditional construction materials. However, as recycling technology is progressively advancing, in the future the economic value of CG-filled AAM may increase to match those of contemporary construction materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号