首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta Butcher were studied in response to irradiance fluctuations caused by surface-wave focusing. The experimental conditions simulated the prominent features of the light field (high average irradiance, spectral composition and statistical properties) in the uppermost few meters of the water column under sunny surface conditions. The properties of algae grown under high-frequency fluctuations were compared with control cells grown under constant light at the same average irradiance (800 mol quantam-2s-1). No significant differences were found for a number of parameters, including growth rate, cellular chlorophyll a and pigment ratios, photosynthetic unit size and density of Photosystem I reaction centers, the rate of photosynthesis at the growth irradiance, dark respiration, and in vivo fluorescence of chlorophyll a per cell. Photosynthetic parameters were not affected by whether the incident light for oxygen exchange measurements was fluctuating or constant. This was the case whether the cells had been previously acclimated to either fluctuating or constant irradiance. Such a photosynthetic response indicates that cells are accomplishing a time integration of the fluctuating light. In addition, although D. tertiolecta is capable of dramatically changing its optical properties in response to low or high growth irradiance levels, the refractive index of the cells, the efficiency factors for light absorption and scattering by individual cells, and chlorophyll-specific absorption and scattering coefficients of cell suspensions, were all very similar under high irradiance, whether or not wave focusing was present.Contribution to the program of GIROQ (Groupe Interuniversitaire de Recherches Océanographiques du Québec)  相似文献   

2.
Cylindrotheca closterium is a common marine diatom living in intertidal environments where it can be present both in the water column and on sediments, depending on the tidal regime. In the present work this diatom was employed to investigate the responses to desiccation and to increase in PAR and UVB intensity, as occurs during emersion. Under these circumstances, the production of active oxygen species (AOS) may be enhanced resulting in an oxidative stress. Stress responses in this species were measured by exposing it to normal (30) and double salinity (60), supplying light of low or high intensity for 12 h, in the latter case either without or with moderate dose rates of UVB. Pulse amplitude modulated fluorometry was used to measure Chl a autofluorescence (F 0), an index of photosynthetic efficiency of PSII (F v/F m) and the relative electron transfer rate (rETR). The oxidative stress was evaluated by analysing GSH pools and SOD activity. It was observed that at double salinity and under low light, intracellular pools of reduced glutathione (GSH) were higher than under the two conditions of high light without and with UVB at both salinities. The antioxidative defence activity of superoxide dismutase (SOD) was far higher under hypersaline conditions. The oxidative damage was evaluated as protein and lipid damage. The results showed that it expressed itself mainly through protein peroxidation: at normal salinity relative protein carbonyl content was (a) twice as high as in cells grown at double salinity, and (b) three times as high under UVB. Total unsaturated lipid contents doubled under hypersalinity conditions. The lipid peroxidation marker malondialdehyde showed the strongest response to low light and UVB at salinity value of 60. Lipid peroxide content was significantly higher at salinity of 60 compared to normal salinity and was the highest under low light and high light with UVB. The simulated emersion condition of the diatom seems to lead to the establishment of a balance between damage and repair, expressed mainly as (a) oxidative protein damage at normal salinity, in particular due to UV radiation, (b) sufficient protection by SOD activity mainly under hypersaline conditions.  相似文献   

3.
Two spectrophotometric assays for protein commonly used in marine research (Coomassie stain, Bradford; alkaline copper, Lowry) and a more recent assay which has not been applied in this field (bicinchoninic acid, Smith) were compared for homogenates of the marine diatom Thalassiosira pseudonona using bovine serum albumin (BSA) as a standard. When homogenates were prepared by precipitating protein with trichloroacetic acid (TCA) and redissolving in 1 N NaOH, the protein content estimated by the Lowry and Smith assays agreed closely, but was consistently 20% higher than that indicated by the Bradford assay. To determine if this difference was due to the choice of a protein standard, protein from T. pseudonana was purified and compared to BSA, bovine gamma-globulin (BGG), and casein. The reactivity of the purified protein (expressed as the slope of the absorbance vs protein concentration curve) did not differ between cultures grown at high or low irradiance. For the Smith and Bradford assays the reactivity of BSA was not significantly different from algal protein, but for the Lowry assay, algal protein was significantly higher in reactivity than BSA. BGG was not significantly different in reactivity from algal protein for the Lowry and Smith assays, but BGG gave significantly lower absorbances than algal protein in the Bradford assay. These results suggest that BSA is a suitable standard for algal protein in the Bradford assays, while BGG is preferable for the Lowry assay. Either protein standard could be used for the Smith assay. Differences in purified algal protein reactivity compared to BSA could not account for the differences among the assays, nor could interference by chlorophyll a. Precipitating protein with TCA prior to analyses gave lower protein than direct analyses of homogenates for the Lowry and Smith assays, but no differences were found for the Bradford assay. As a result, the Lowry and Smith assays indicated up to 60% greater protein than the Bradford if TCA precipitation was not performed. This may be due to removal of free amino acids and small peptides which are less reactive in the Bradford assay. The 20% higher protein found in the Lowry or Smith vs Bradford assays may be due to different assay sensitivity to small peptides or other compounds which are precipitated along with proteins by TCA. Although the Smith assay is substantially simpler to perform than the Lowry, there appear to be no quantitative differences in the results. It remains unclear which spectrophotometric assay is most accurate, but the Bradford assay is faster and simpler, and is less likely to be affected by non-protein compounds found in marine phytoplankton.  相似文献   

4.
The surf diatom Chaetoceros armatum T. West, collected from its natural habitat along the Washington coast (USA), had a large inorganic component in the form of a clay coat (consisting of clay minerals, illite and montmorillonite) surrounding the cell chains: 63% of the dry weight of the natural material collected in November was inorganic. The organic fraction was composed of 67.6% lipid, 29.7% protein, and 1.3% carbohydrate. Culture cells were likewise high in protein and lipid and low in carbohydrate. Traces of chitin found in field samples were probably a contaminant, since chitin was absent from cultured cells. This diatom species serves as a major food source throughout the year for the Pacific razor clam Siliqua patula Dixon, which inhabits these same beaches. Protein constituted 47% and lipid 42% of the dry weight of razor clam tissue. The fatty acid distribution in the diatom lipid resembled that previously reported for other diatom species; similarly, the fatty acid distribution of the clam lipid was similar to that previously reported for other bivalve molluscs. The clam fatty acids differed in chain length and degree of saturation from those extracted from its food source, indicating an active fatty acid metabolism in the clam.Contribution No. 995 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

5.
The effect of feeding the flagellate Isochrysis galbana (Parke; clone T-Iso) of modified lipid composition on the growth and lipid composition of juvenile scallops [Placopecten magellanicus (Gmelin)] was investigated in the spring of 1993. I. galbana grown in 85-liter cage culture turbidostats under conditions of nitrogen limitation had a significantly higher total lipid content than when grown under nutrient-replete conditions. This was due mainly to a doubling in the amount of less unsaturated triacylglycerol in the cells. The concentrations of methyl and ethyl ketones were also greater in nitrogen-limited cells. Diets of nitrogen-limited I. galbana and nutrient-replete I. galbana grown in continuous and semi-continuous cultures were compared. Scallop juveniles were batch fed daily, and measurements of ingestion were determined. Samples of juveniles were removed periodically for determination of organic weight. The juveniles did not grow when fed nitrogen-limited or nutrient-replete I. galbana alone; however, when each diet was supplemented with 20% of the diatom Chaetoceros muelleri (Lemm.), there was a significant increase in growth in the juveniles receiving the nitrogen-limited I. galbana compared with juveniles on other diets. In comparison with I. galbana,  C. muelleri provided a rich source of carbohydrates and the essential fatty acid 20:4ω6. This study shows the importance of providing optimal dietary levels of ω3 and ω6 polyunsaturated fatty acids, as well as less unsaturated fatty acids and carbohydrates. Received: 29 September 1997 / Accepted: 2 October 1998  相似文献   

6.
P. R. Pugh 《Marine Biology》1975,33(3):195-205
Cultures of the marine diatom Coscinodiscus eccentricus Ehrenberg were grown at four salinities, namely 20, 25, 30 and 35%. The changes in the carbohydrate, protein, silicon and pigment concentrations of the cells were studied throughout the growth cycles in these salinities. The carbohydrate content, expressed as a percentage of the cell dry weight, increased in all cultures during the lag and early log phases. It later fell, sharply at first, as it was used up faster than it was produced. It was not stored during the stationary phase. The protein percentage composition built up to a peak at different stages during the exponential or stationary growth stages, depending on the salinity, but was later respired. The silicon percentage of the dry weight usually decreased during the log phase, as the cells were dividing before becoming fully silicified, and remained low in the stationary phase due to an increase in the volume of the cells. The changes in the frustular thickness were also calculated. The values ranged from 0.24 to 0.35 μm (at the beginning and end of the experiments) to 0.15 μm during the log growth phase. The pigment content was always low. The lipid composition of the cells was calculated by difference. It was usually low during the exponential growth phase, but was accumulated during the stationary phase. The point at which this accumulation began was associated with the time when protein respiration started.  相似文献   

7.
Three genetically distinct clones of Skeletonema costatum (Grev.) Cleve were grown at 20°C under high (274 E m-2 s-1) and low (27 E m-2 s-1) light conditions and their photoadaptive photosynthetic responses compared. When all three clones were grown under low light, pigment analyses and fluorescence excitation spectra demonstrated that the accessory pigments, chlorophyll c and fucoxanthin, became more important in light-harvesting compared to chlorophyll a. Photosynthetic unit sizes increased for Photosystems I and II in low light, but photosynthesis vs irradiance characteristics were not reliable predictors of photosynthetic unit features. Fluorescence excitation spectra and photosynthesis vs irradiance (P-I) relationships indicated that changes in energy transfer occurred independent of changes in pigment content. Large increases in accessory pigment content were not accompanied by large increases in excitation from these pigments. Changes in energy transfer properties were as important as changes in PSU size in governing the photoadaptive responses of S. costatum. When the three clones were grown under identical conditions, each had a separate and distinct pattern of photoadaptation. Significant differences among clones were found for pigment ratios, photosynthetic unit sizes for Photosystems I and II and efficiency of energy transfer between pigments. These strikingly different photoadaptive strategies among clones may partially account for the great ecological success of the diatom species. This is the first quantitative investigation of the importance of both chlorophyll c and fucoxanthin to the adaptive responses of diatoms to light intensity, and represents the most complete characterization of the photoadaptive responses of a single species of marine phytoplankter to differences in light environment.  相似文献   

8.
Pocillopora damicornis (Linnaeus) and Montipora verrucosa (Lamarck) were collected from Hawaiian reefs. In two experiments (September 1979-January 1980: ca. 4 mo; August-October 1980; ca. 2 mo), these reef corals were grown under sunlight passed through filters producing light fields of similar quantum flux but different spectral composition. In vitro cultures of symbiotic zooxanthellae (Symbiodinium microadriaticum Freudenthal) from M. verrucosa were cultured under similar conditions for 15 d. Blue or white light promoted more coral skeletal growth than green or red light. In both coral species, blue light increased the total amount of chlorophyll a of the coral-zooxanthellae association. In the perforate species, M. verrucosa, the pigment concentration was elevated by an increase in the density of zooxanthellae, but the pigment concentrations per algal cell remained unchanged; in the non-perforate species, P. damicornis, it appears that pigment concentration was elevated by an increase in pigment per algal cell, and not by an increase in density of zooxanthellae. The sunloving reef-flat coral P. damicornis did not grow as rapidly as the shade-species M. verrucosa at the low quantum flux (about 10% sunlight) provided by the experimental treatments. The in vitro cultures of zooxanthellae from M. verrucosa exhibited growth rates in light of altered spectral quality that correlated with the responses of the host coral species: blue and white light supported significantly greater growth than green light, and red light resulted in the lowest growth rate.Contribution No. 678 of the Hawaii Institute of Marine Biology  相似文献   

9.
Dark respiration rates were measured and carbon-excretion rates calculated for a nitrate-limited population of the marine chrysophyte Monochrysis lutheri grown in continuous culture at 20°C on a 12 h light-12 h dark cycle of illumination and over a series of 4 growth rates. A significant (P<0.05) positive correlation was found between dark respiration rate and growth rate. From a simple linear fit to the data, the respiration rate at maximum growth rate was estimated to be roughly 10.5% of the maximum gross-carbon-production rate, and more than three times higher than the extrapolated respiration rate at zero net-growth rate. Carbon-excretion rates showed no significant correlation with growth rate, and averaged less than 5% of the maximum gross-carbon-production rate. Mean cell nitrogen to carbon ratios were correlated in a virtually linear manner (r=0.994) with growth rate, and at a given growth rate were consistently higher than nitrogen to carbon ratios for the same species grown on continuous light. A comparison of carbon and nitrogen quotas as a function of growth rate for M. lutheri and other species suggests that the increase of cellular nitrogen at high growth rates under nitrate-limited growth conditions may be associated with the storage of cellular protein or amino acids rather than the presence of an inorganic nitrogen reservoir. The maximum nitrate uptake rate per cell during the day changed very little over the range of growth rates studied, and was comparable to the maximum uptake rate found for cells grown on continuous light. However, the cell nitrogen quota increased steadily with growth rate, causing a reduction in the maximum specific-uptake rate of nitrate during the day at high growth rates. The dark nitrate-uptake capacity of the population was clearly exceeded by the supply rate at the two higher growth rates, leading to a buildup of nitrate during the night which amounted to as much as 21% of the particulate nitrogen in the growth chamber by morning.Hawaii Institute of Marine Biology Contribution No. 478.  相似文献   

10.
Using monospecific diets of Thalassiosira pseudonana cells grown under different steady-state conditions, it was determined that higher growth rates of larval Crassostrea gigas Thunberg were obtained when fed T. pseudonana cells grown under high light. High light grown T. pseudonana cells consistently contained relatively more of the saturated fatty acids 14:0 and 16:0. Considered over three independent experiments, high light grown T. pseudonana cells were lower in protein and higher in carbohydrate than low light grown cells. Higher growth rates of larval C. gigas were obtained on diets with more of the essential fatty acid (EFA) 22:63, and less of the other EFA, 20:53. The relative requirements of C. gigas larvae for the essential fatty acids 20:53 and 22:63 are discussed. Faster growing larvae contained higher percentages of the fatty acids 14:0 and 16:0, and lower percentages of 22:2j. Oyster growth rates were correlated with their content of the fatty acids: 14:0, 16:0 and 22:2j in two experiments utilizing separately spawned batches of larvae. Fatty acid profiles are proposed as a technique for assessing larval condition. C. gigas larvae contained ten times the percent composition of the FAs 16:43, 18:17, 20:17 and 22:2j compared with their diet. Correlation analysis suggests that the dietary source of 18:17, 20:17 and 22:2j was 16:17. It is concluded that T. pseudonana cells grown under high light are a superior diet for C. gigas larvae in comparison with low light grown cells of the same species.  相似文献   

11.
Determination of low molecular weight carbohydrates in marine environments indicated that 1-O--D-galactosylglycerol, 6-O--D-galactosyl-1-O--D-galacto-sylglycerol, sucrose, laminaribiose and laminaritriose are widely distributed in seawaters, suspended and sinking particles, and sediments in coastal as well as in deep-sea waters [e.g. Mikawa Bay and Sagami Bay, Kumano Nada (offshore Japan), and northwest North Pacific Ocean, Bering Sea and Antarctic Ocean: collections during 1978–1984]. Identification of these glycosylglycerols and oligosaccharides in algal cells such as a flagellate (Olisthodisus luteus), blue-green algae (e.g.Trichodesmium sp.) and a diatom (Reptocylindrus denicus) strongly suggests that these sugars are photosynthetically produced by algae in the euphotic zone and are then rapidly transported to the deep sea as sinking particles which can be collected by sediment-trap experiments. The rapid decay rate of low molecular weight carbohydrates by microorganisms suggests that the transported sugars provide energy substrates for microorganisms living in the deep sea.Please address all requests for reprints to Dr. Handa at Nagoya University  相似文献   

12.
In 1987 effects of salinity fluctuations on growth of the centric diatom Skeletonema costatum (Greville) Cleve, isolated from the brackish Krammer estuary (SW Netherlands) in 1981, were investigated. Continuous cultures (12 h light: dark cycle) of S. costatum were adapted to constant salinity in natural (16.1) and synthetic (13.5) media. For several days the ammonium-limited cultures were exposed to a salinity fluctuation (minimum 4.8). Decreasing salinity caused an inhibition of photosynthesis, dark respiration and cell growth. Cellular pools of glucose decreased. While the carbohydrate content remained constant, the protein content increased slightly. Net carbon fixation was more inhibited than nitrogen assimilation. Ammonium accumulated during a salinity decrease; a total decline of the overcapacity of ammonium uptake was noticed and nitrogen limitation was relieved. Amino acid pools decreased, probably as a result of excretion (osmoregulation). The enzymes invoilved in ammonium assimilation showed an increased activity. Cellular activities were resumed during a salinity increase. Chlorophyll a increased; photosynthesis, ammonium uptake and growth were stimulated. The ammonium uptake capacity recovered completely; glutamic acid accumulation and increased glutamate-dehydrogenase (GDH) activity indicated supplementary ammonium assimilation via GDH. The activities of glutamine synthetase/glutamate synthase (GS/GOGAT) and GDH stabilized, and the cells returned to steady state under ammonium limitation.Communication no. 426 Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

13.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

14.
K. Ohki  Y. Fujita 《Marine Biology》1988,98(1):111-114
Aerobic nitrogenase activity in the marine non-heterocystous cyanobacterium Trichodesmium spp. NIBB 1067, isolated off the Izu Peninsula, Japan in 1983 and grown under artificial conditions, was assayed by the acetylene reduction method. This strain exhibited acetylene reduction activity under aerobic conditions when cells had been grown in the medium free of combined nitrogen. Activity was markedly enhanced by light, and dependent on the growth phase being higher during the exponential growth phase and lower during the late linear and stationary growth phases. Since typical colony formation occurred during the last growth phase, the present results contradict the idea that N2-fixation depends on colony formation. The photosynthesis inhibitor DCMU at 10-6 M inhibited light-dependent acetylene reduction completely. Acetylene reduction by Trichodesmium spp. was tolerant of O2 as strongly as that in the heterocystous cyanobacteria. Even at a partial pressure of oxygen (pO 2) of 3 atm, the activity still remained as high as half of the maximum. It was almost under anaerobic conditions. Maximum activity was obtained at pO2 of ca. 0.1 atm.  相似文献   

15.
E. Paasche 《Marine Biology》1973,19(2):117-126
The small marine plankton diatom Thalassiosira pseudonana Hasle and Heimdal (Guillard's clone 3H) was grown in chemostats with silicate as the limiting nutrient. The calculated maximum growth rates were comparable to those previously reported for this species. The silica content of the diatom shells varied with the growth rate. As the growth rate approached zero, there were still measurable quantities of residual reactive silicate in the medium. In one of the two chemostats used, silicate assimilation by the cells was inefficient due to some unknown internal or external factor. In the other chemostat, statistically calculated half-saturation constants of growth were in the range of 0.5 to 0.8 g—at Si/l, depending on which kind of correction was made for residual silicate. Half-saturation constants of steady-state mean silicate uptake per cell and hour, calculated in a similar fashion, were in the range of 1.4 to 2.6 g—at Si/l. These results indicate that the silicate concentrations causing a reduced silicate uptake by this species in nature do not necessarily result in a correspondingly reduced growth rate. Growth in coastal waters is likely to become seriously limited by a shortage of silicate only when most of the silicate originally present has been removed in the course of a diatom bloom.  相似文献   

16.
Five species of unicellular algae of the same age, cultured bacteria-free under standard growth conditions, were analyzed for chemical composition and fed to different size classes of Artemia salina. The green algae Chlamydomonas sphagnicolo, Dunaliella viridis, Platymonas elliptica and Chlorella conductrix had significantly higher percentages of protein and lipid than did the diatom Nitzschia closterium. Total ash value was highest in populations of N. closterium. Shrimp fed Chlamydomonas sphagnicolo cells assimilated highest percentages of organic matter, while those fed Chlorella conductrix had lowest assimilation rate. Respiration rates were inversely proportional to animal size (weight) and algal cell volume. Growth, survival, rate of sexual maturtion, and sex ratio were dependent on the growth and assimilation efficiencies obtained from each respective algal food. Shrimp fed Chlamydomonas sphagnicolo, D. viridis, or P. elliptica cells displayed highest growth and assimilation efficiencies.  相似文献   

17.
High-frequency fluctuations due to wavefocusing are prominent characteristics of light in shallow marine environments. Effects of high-frequency (0.01 to 1 Hz) fluctuating light on growth rates of the red algaChondrus crispus Stackh., collected from Crane Neck Point, New York, USA, during July 1988, were determined by comparing plants grown under fluctuating and constant light regimes with similar daily irradiances. At high daily irradiance, growth rates were higher under fluctuating light than under constant light. Fluctuating light effects were frequency-dependent; growth was enhanced by fluctuations at 0.1 and 1 Hz, but not by fluctuations at 0.01 Hz. At low daily irradiance, growth rates were not affected by fluctuating light at any frequency tested. Enhancement of growth was not due to effects of high-frequency light fluctuations on photoacclimation responses ofC. crispus. Plants grown under fluctuating light at high daily irradiance actually exhibited lower photosynthetic capacity and efficiency (determined under constant light) than plants grown under constant light. These differences were attributable to variation in the density of Photosystem II reaction centers, which was low in plants grown under fluctuating light. Maximum turnover rate of whole-chain electron transport and activity of ribulose-1,5-bisphosphate carboxylase were affected by total daily irradiance, but not by high-frequency light fluctuations. Enhancement of growth under fluctuating light was partly attributable to reduced rates of dark respiration compared to rates of plants grown under constant light. The results also provided indirect evidence that high-frequency light fluctuations may enhance instantaneous photosynthetic rates. This effect could increase daily carbon gain and, therefore, stimulate growth ofC. crispus under high-frequency light fluctuations.  相似文献   

18.
Growth rates and intracellular-dimethylsulphoniopropionate (DMSP) concentrations of five green algal species collected from different geographic regions in 1986 and 1989 were determined under four photon flux rates. InUlothrix implexa, U. subflaccida andAcrosiphonia arcta from Antarctica, growth was light-saturated at lower irradiances than in temperateUlva rigida from Southern Chile andBlidingia minima from Germany. The DMSP content ofUlothrix implexa, A. arcta andUlva rigida was directly correlated with the light factor: with increasing irradiance, algal DMSP level increased. In contrast, inUlothrix subflaccida andB. minima DMSP concentrations gradually decreased up to a photon flux rate of 30µmol m–2 s–1, then increased markedly under the highest photon flux rate tested. In non-growing, dark-incubatedA. arcta DMSP content was reduced by 35%, while the DMSP pool of all other species remained unchanged, at the level of pre-culture conditions. Under full darkness all plants exhibited a significantly higher DMSP concentration compared with algae grown at low photon flux rates of 2 to 30µmol m–2 s–1. These data show a correlation between growth pattern and DMSP biosynthesis, and may point to a species-specific minimum amount of light energy necessary for DMSP accumulation.Contribution no. 302 of the Alfred Wegener Institute of Polar and Marine Research  相似文献   

19.
J. Hama  N. Handa 《Marine Biology》1992,112(2):183-190
Diel photosynthetic production of water-extractable and residual carbohydrates in natural phytoplankton populations was investigated by analyzing monosaccharide components with combined gas chromatography/mass spectrometry (GC/MS) and13C tracer methods. The applicability of this technique for measuring the photosynthetic production of natural phytoplankton populations was examined. Phytoplankton was collected in August 1984 from Kinu-ura Bay, Japan, and incubated under natural light and dark conditions for 24 h. Cell density and concentration of chlorophylla increased about four- and three-fold, respectively, during the experimental period. Production of glucose, galactose, mannose, rhamnose, ribose, fucose, xylose and arabinose was measured in the water-extractable and residual carbohydrate fractions of the phytoplankton. Most of the monosaccharides in both fractions were produced the monosaccharides in both fractions were produced mainly during the daytime. Glucose was a major component in the water-extractable carbohydrate fraction produced by the phytoplankton, and decreased markedly at night. Thus, most of the glucose in the water-extractable carbohydrates seemed to be a constituent of the storage glucan of algal cells. Most monosaccharide components of the water-extractable carbohydrate fraction except glucose did not decrease significantly at night. Ribose of the water-extractable carbohydrate fraction was synthesized at a maximum rate in the morning, prior to the other monosaccharide constituents of this fraction. The major monosaccharide constituent in the residual carbohydrate fraction produced by the phytoplankton was glucose, which decreased significantly at night. Diel change in the production of monosaccharide constituents in residual carbohydrates indicated wide variability in the monosaccharide composition of cell-wall material in algae. The ratios of production of water-extractable and residual carbohydrates to POC production ranged from 8.8 to 28% and from 3.7 to 5.9%, respectively, throughout the daytime and nighttime.  相似文献   

20.
The effect of the chemical composition of food on the reproductive success of the copepods Acartia tonsa Dana and A. hudsonica Pinhey was studied in the laboratory. Laboratory-reared individuals were fed one of three monoalgal diets at different stages of growth: the diatom Thalassiosira weissflogii, the flagellate Rhodomonas lens and the dinoflagellte Prorocentrum minimum. The diet was analyzed for carbon, nitrogen, protein, carbohydrate and fatty acid content. Reproductive success was measured as eggs female-1 day-1 (E r) and as the hatching success of the eggs. The E r of Acartia spp. was correlated with protein and specific fatty acids [16:17 (negative), 20:53, 22:63, and 18:0 (positive)] and, especially, the fatty acid composition of the algae expressed as the 3:6 and 20:22 fatty acid ratios. The youngest diatom cultures and exponentially-growing flagellates displayed the highest E r; the lowest E r was recorded for females fed the senescent diatom cultures. The development time of eggs was affected by the age of the phytoplankton culture fed to the female. Hatching success of eggs decreased with the age of the algal culture, but no correlation was found with the meansured chemical components of the food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号