首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile-immobile-zone (MIZ) model is presented to describe the structure of a DNAPL finger in water-saturated porous media and the velocity of finger propagation. A finger is composed of a finger body and a tip. The finger body has a mobile core and an immobile sheath. All the DNAPL within the tip of a finger is mobile. Lab experiments utilizing image analyses of a DNAPL (PCE) penetrating into water-saturated homogeneous glass beads were carried out in a two-dimensional transparent chamber. The results show that the fingers elongated almost linearly with time. The fingers did not grow laterally after the tip of the finger had passed. The average finger diameters were between 3.9 and 5.4 mm for PCE propagation in water-saturated glass bead porous media with mean particle diameters from 0.32 to 1.36 mm. The estimated mobile core diameters were 51-60% of the average finger diameters.  相似文献   

2.
A classical way to obtain three-fluid retention curves in porous media from measured two-fluid retention curves is based on the Leverett concept, which states that the total volumetric liquid content in a water-wet porous medium, containing water, a nonaqueous-phase liquid (NAPL) and air, is a function of the capillary pressure across the interface between the continuous NAPL and air. This functional relationship results from the assumed condition that in a three-fluid porous medium, the intermediate wetting fluid spreads over the water-air interface. Application of Leverett's concept may not be valid, however, for nonspreading NAPLs like perchloroethylene (PCE). This paper discusses measurements of both PCE-air and water-PCE-air retention curves using a long vertical column in conjunction with a dual-energy gamma radiation system. The data indicate that the Leverett concept was applicable only until a critical PCE saturation had been reached.  相似文献   

3.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

4.
The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL spill event decreased CT mass that reached the water table by 98% and had a significant impact on the formation of trapped NAPL. For all cases simulated, use of the new constitutive model that allows the formation of residual NAPL increased the amount of NAPL retained in the vadose zone. Density-driven advective gas flow from the ground surface controlled vapor migration in strongly anisotropic layers, causing NAPL mass flux to the lower layer to be reduced. These simulations indicate that consideration of the formation of residual and trapped NAPLs and dynamic boundary conditions (e.g., areas, rates, and periods of different NAPL and water discharge and fluctuations of atmospheric pressure) in the context of full three-phase flow are needed, especially for NAPL spill events at the ground surface. In addition, NAPL evaporation, density-driven gas advection, and NAPL vertical movement enhanced by water flow must be considered in order to predict NAPL distribution and migration in the vadose zone.  相似文献   

5.
With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.  相似文献   

6.
This work considers the applicability of conservative tracers for detecting high-saturation nonaqueous-phase liquid (NAPL) entrapment in heterogeneous systems. For this purpose, a series of experiments and simulations was performed using a two-dimensional heterogeneous system (10x1.2 m), which represents an intermediate scale between laboratory and field scales. Tracer tests performed prior to injecting the NAPL provide the baseline response of the heterogeneous porous medium. Two NAPL spill experiments were performed and the entrapped-NAPL saturation distribution measured in detail using a gamma-ray attenuation system. Tracer tests following each of the NAPL spills produced breakthrough curves (BTCs) reflecting the impact of entrapped NAPL on conservative transport. To evaluate significance, the impact of NAPL entrapment on the conservative-tracer breakthrough curves was compared to simulated breakthrough curve variability for different realizations of the heterogeneous distribution. Analysis of the results reveals that the NAPL entrapment has a significant impact on the temporal moments of conservative-tracer breakthrough curves.  相似文献   

7.
Two-dimensional multiphase flow and transport simulators were refined and used to numerically investigate the entrapment and dissolution behavior of tetrachloroethylene (PCE) in heterogeneous porous media containing spatial variations in wettability. Measured hydraulic properties, residual saturations, and dissolution parameters were employed in these simulations. Entrapment was quantified using experimentally verified hydraulic property and residual saturation models that account for hysteresis and wettability variations. The nonequilibrium dissolution of PCE was modeled using independent estimates of the film mass transfer coefficient and interfacial area for entrapped and continuous (PCE pools or films) saturations. Flow simulations demonstrate that the spatial distribution of PCE is highly dependent on subsurface wettability characteristics that create differences in PCE retention mechanisms and the presence of subsurface capillary barriers. For a given soil texture, the maximum and minimum PCE infiltration depth was obtained when the sand had intermediate (an organic-wet mass fraction of 25%) and strong (water- or organic-wet) wettability conditions, respectively. In heterogeneous systems, subsurface wettability variations were also found to enhance or diminish the performance of soil texture-induced capillary barriers. The dissolution behavior of PCE was found to depend on the soil wettability and the spatial PCE distribution. Shorter dissolution times tended to occur when PCE was distributed over large regions due to an increased access of flowing water to the PCE. In heterogeneous systems, capillary barriers that produced high PCE saturations tended to exhibit longer dissolution times.  相似文献   

8.
The results of dissolution experiments for benzene, toluene, m-xylene and naphthalene (BTXN) from a relatively insoluble oil phase (tridecane), residually trapped in a non-sorbing porous medium, are described. This mixture was chosen to simulate dissolution of soluble aromatic compounds from a petroleum hydrocarbon mixture, e.g., crude oil, for which a large fraction of the mixture is relatively insoluble. The experiments were carried out at a small source length to interstitial velocity ratio, L/v, so that dissolution would be mass transfer limited (MTL). When fitted to data for toluene, a multiregion mass transfer model was found to predict the experimental data satisfactorily for the other components without adjustment of the mass transfer rate parameters. These results indicate that the dissolution process can be generalized for various hydrophobic organic compounds present in a multicomponent non-aqueous phase liquid (NAPL) when mass transfer limitations are present. This also suggests that dissolution data obtained for one compound can be useful for predicting the dissolution histories for other compounds from petroleum hydrocarbon mixtures.  相似文献   

9.
Two approaches were used to investigate the influence of dissolved oxygen (DO) and substrate availability on the formation and dynamics of "bioactive zones" in a water-saturated porous medium. A bioactive zone is defined as a region where a microbial community is sufficiently active to metabolize bioavailable substrates. In the first approach, microbial activity was characterized by monitoring the spatial and temporal variability of DO and aqueous substrate (salicylate and naphthalene) concentrations during miscible-displacement experiments. In the second approach, microbial activity was monitored using multiple fiber optics emplaced in the porous medium to detect luminescence produced by Pseudomonas putida RB1353, a bioluminescent reporter organism that produces light when salicylate (an intermediate of naphthalene degradation) is present. The results of both approaches show that the location and size of the bioactive zones were influenced by in situ DO and substrate availability. When DO was not a limiting factor (i.e., lower substrate input concentrations), the bioactive zone encompassed the entire column, with the majority of the microbial activity occurring between the inlet and midpoint. However, as the availability of DO became limiting for the higher substrate input experiments, the size of the bioactive zone shrank and was ultimately limited to the proximity of the column inlet.  相似文献   

10.
The ability of a multiphase flow model to capture the migration behavior of chlorinated solvents under conditions of surfactant-facilitated interfacial tension (IFT) reduction is assessed through comparison of model predictions with observations from controlled laboratory experiments. Tetrachloroethene (PCE) was released in two-dimensional saturated systems, packed with sandy media that incorporated rectangular lenses of capillary contrast. Spatially uniform interfacial tension conditions were created in the tanks by pre-flushing the porous medium with either Milli Q water or an aqueous surfactant solution. Experimental observations showed that surfactant-facilitated IFT reductions substantially lowered capillary resistance to the vertical downward migration of PCE and enabled PCE to enter finer grained, less permeable lenses that were not penetrated in the absence of surfactant. An immiscible flow model was used to simulate the conditions of the laboratory experiments. Under higher IFT conditions (47.5 and 5 dyn/cm), the model could successfully predict the general migration behavior of the organic liquid. Model predictions, however, exhibited poorer agreement with observed migration pathways under low IFT conditions (0.5 dyn/cm). In all cases, the predicted PCE distributions were influenced by selection of the parametric model for capillary retention and relative permeability. Simulated migration rates were more consistent with observed behavior when the Brooks-Corey/Burdine model was employed. For low interfacial tensions, improved predictions of migration pathways were obtained through grid refinement and incorporation of small-scale packing variability. Simulations highlight the substantial sensitivity of model predictions to the capillary pressure-scaling factor, grid resolution, and small-scale porosity variations at interfaces of permeability contrast under reduced IFT conditions.  相似文献   

11.
This study demonstrates the capabilities of a typical medical X-ray Computed Tomography (CT) scanner to non-destructively quantify non-aqueous phase liquid (NAPL) volumes, saturation levels, and three-dimensional spatial distributions in packed soil columns. Columns packed with homogeneous sand, heterogeneous sand, or natural soil, were saturated with water and injected with known quantities of gasoline or tetrachloroethene and scanned. A methodology based on image subtraction was implemented for computing soil porosity and NAPL volumes in each 0.35 mm x 0.35 mm x 1 mm voxel of the columns. Elimination of sample positioning errors and instrument drift artifacts was essential for obtaining reliable estimates of above parameters. The CT data-derived total NAPL volume was in agreement with the measured NAPL volumes injected into the columns. CT data-derived NAPL volume is subject to a 2.6% error for PCE and a 15.5% error for gasoline, at average NAPL saturations as low as 5%, and is mainly due to instrument noise. Non-uniform distributions of NAPL due to preferential flow, and accumulation of NAPL above finer-grained layers could be observed from the data on 3-D distributions of NAPL volume fractions.  相似文献   

12.
The purpose of this work is to present a distributed-domain mathematical model incorporating the primary mass-transfer processes that mediate the transport of immiscible organic liquid constituents in water-saturated, locally heterogeneous porous media. Specifically, the impact of grain/pore-scale heterogeneity on immiscible-liquid dissolution and sorption/desorption is represented in the model by describing the system as comprising a continuous distribution of mass-transfer domains. With this conceptualization, the distributions of the initial dissolution rate coefficient and the sorption/desorption rate coefficient are represented as probability density functions. Several sets of numerical experiments are conducted to examine the effects of heterogeneous dissolution and sorption/desorption on contaminant transport and elution. Four scenarios with different combinations of uniform/heterogeneous rate-limited dissolution and uniform/heterogeneous rate-limited sorption/desorption are evaluated. The results show that both heterogeneous rate-limited sorption/desorption and heterogeneous rate-limited dissolution can significantly increase the time or pore volumes required to elute immiscible-liquid constituents from a contaminated porous medium. However, sorption/desorption has minimal influence on elution behavior until essentially all of the immiscible liquid has been removed. For typical immiscible-liquid constituents that have relatively low sorption, the asymptotic elution tailing produced by heterogeneous rate-limited sorption/desorption begins at effluent concentrations that are several orders of magnitude below the initial steady-state concentrations associated with dissolution of the immiscible liquid. Conversely, the enhanced elution tailing associated with heterogeneous rate-limited dissolution begins at concentrations that are approximately one-tenth of the initial steady-state concentrations. Hence, dissolution may generally control elution behavior of immiscible-liquid constituents in cases wherein grain/pore-scale heterogeneity significantly influences both dissolution and sorption/desorption.  相似文献   

13.
选取广州某地大气环境作为研究对象,采用高分辨气质联用色谱对气相、颗粒相中17种二噁英(PCDD/Fs)单体进行分析。结果表明,研究区域大气PCDD/Fs主要集中于颗粒相,且气相和颗粒相中PCDD/Fs均表现出"源"特征。颗粒相中PCDD/Fs单体以OCDD、1,2,3,4,6,7,8-HpCDF、OCDF、1,2,3,4,6,7,8-HpCDD为主;气相中PCDD/Fs单体以1,2,3,7,8-PeCDF、2,3,4,7,8-PeCDF、1,2,3,4,7,8-HxCDF、1,2,3,4,6,7,8-HpCDF为主。颗粒相中PCDD/Fs浓度随着氯原子数的增加而增加,气相中PCDD/Fs随着氯原子数的增加而减少。气相中主要毒性贡献单体为2,3,4,7,8-PeCDF,其与气相总毒性当量浓度的相关系数为0.908;颗粒相中主要毒性贡献单体为2,3,4,7,8-PeCDF、2,3,4,6,7,8-HxCDF,与颗粒相总毒性当量浓度的相关系数分别为0.851、0.883。主成分分析结果表明,颗粒相和气相的毒性当量浓度具有相似的分布特征。  相似文献   

14.
A coupled atmosphere–ocean general circulation model, ECHAM5-MPIOM, was used to study the multicompartmental cycling and long-range transport of persistent and semivolatile organics. Multiphase systems in air and ocean are covered by submodels for atmospheric aerosols, HAM, and marine biogeochemistry, HAMOCC5, respectively. The model, furthermore, encompasses 2D surface compartments, i.e. top soil, vegetation surfaces and sea-ice. The total environmental fate of γ-hexachlorocyclohexane (γ-HCH, lindane) and dichlorophenyltrichloroethane (DDT) in agriculture were studied.DDT is mostly present in the soils, the water-soluble γ-HCH in soils and ocean. DDT has the longest residence time in almost all compartments. Quasi-steady state with regard to substance accumulation is reached within a few years in air and vegetation surfaces. In seawater the partitioning to suspended and sinking particles contributes to the vertical transport of substances. On the global scale deep water formation is, however, found to be more efficient. Up to 30% of DDT but only less than 0.2% of γ-HCH in seawater are stored in particulate matter.On the time scale studied (1 decade) and on global scale substance transport in the environment is determined by the fast atmospheric circulation. The meridional transport mechanism, for both compounds, is significantly enhanced by multi-hopping. Net meridional transport in the ocean is effective only regionally, mostly by currents along the western boundaries of Africa and the Americas. The total environmental burdens of the substances experience a net northward migration from their source regions, which is more pronounced for DDT than for γ-HCH. Due to the application distribution, however, after 10 years of simulation 21% of the global environmental burden of γ-HCH and 12% of DDT have accumulated in the Arctic.  相似文献   

15.
Highland (altitude 1600 m above sea level) and lowland (altitude −2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号