首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work aimed to optimize high-performance photocatalysts based on graphene oxide/titanium dioxide (GO/TiO2) nanocomposites for the effective degradation of aqueous pollutants. The catalytic activity was tested against the degradation of dichloroacetic acid (DCA), a by-product of disinfection processes that is present in many industrial wastewaters and effluents. GO/TiO2 photocatalysts were prepared using three different methods, hydrothermal, solvothermal, and mechanical, and varying the GO/TiO2 ratio in the range of 1 to 10%. Several techniques were applied to characterize the catalysts, and better coupling of GO and TiO2 was observed in the thermally synthesized composites. Although the results obtained for DCA degradation showed a coupled influence of the composite preparation method and its composition, promising results were obtained with the photocatalysts compared to the limited activity of conventional TiO2. In the best case, corresponding to the composite synthesized via hydrothermal method with 5% of GO/TiO2 weight ratio, an enhancement of 2.5 times of the photocatalytic degradation yield of DCA was obtained compared to bare TiO2, thus opening more efficient ways to promote the application of photocatalytic remediation technologies.  相似文献   

2.
This study synthesized multiwall carbon nanotube (MWNT)–titania (TiO2) composites and examined their characteristics and photocatalytic performance for the cleaning of gas-phase benzene, toluene, ethyl benzene, and o-xylene (BTEX) under simulated indoor conditions. Optical and spectral surveys of the as-synthesized composite confirmed that the TiO2 nanoparticles were bound intimately to the MWNT networks. The photocatalytic performance was evaluated using an annular-type reactor inner-coated with MWNT–TiO2 or Degussa P25 TiO2. The composite revealed gas removal ability superior to that of stand-alone TiO2. This composite was also less affected by humidity during toluene decomposition compared to the previous result obtained from a stand-alone TiO2. Unlike another previous result obtained from the TiO2, the performance of the composite was not affected by changes in input concentration (IC) within a simulated indoor air quality range (0.1–1.0 ppm) but it decreased significantly when the IC was increased to 5 and 10 ppm. As the flow rate was decreased from 4.0 to 1.0 L min?1, the average efficiency for the target compounds increased to 95% or ~100%. The MWNT–TiO2 composite could be applied effectively to the decomposition for BTEX under certain simulated indoor conditions.

Implications: Unlike water applications, there are few reports of gas-phase applications of multiwall carbon nanotubes (MWCNT)–TiO2 composites. This study found that MWCNT–TiO2 composites showed performance in the removal of toxic gaseous aromatic superior to that of stand-alone TiO2. In addition, the pollutant degradation efficiency of the composite was less affected by humidity than for a stand-alone TiO2 unit within a simulated indoor relative humidity range. Moreover, unlike the TiO2 unit, the composite's performance was not affected by variations in the input concentrations within the simulated indoor air quality (IAQ) range. In addition, the decomposition efficiencies increased to 100% with decreasing flow rate.  相似文献   

3.
The study is aimed at evaluating the potential of immobilized TiO2-based zeolite composite for solar-driven photocatalytic water treatment. In that purpose, TiO2-iron-exchanged zeolite (FeZ) composite was prepared using commercial Aeroxide TiO2 P25 and iron-exchanged zeolite of ZSM5 type, FeZ. The activity of TiO2-FeZ, immobilized on glass support, was evaluated under solar irradiation for removal of diclofenac (DCF) in water. TiO2-FeZ immobilized in a form of thin film was characterized for its morphology, structure, and composition using scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). Diffuse reflectance spectroscopy (DRS) was used to determine potential changes in band gaps of prepared TiO2-FeZ in comparison to pure TiO2. The influence of pH, concentration of hydrogen peroxide, FeZ wt% within the composite, and photocatalyst dosage on DCF removal and conversion efficiency by solar/TiO2-FeZ/H2O2 process was investigated. TiO2-FeZ demonstrated higher photocatalytic activity than pure TiO2 under solar irradiation in acidic conditions and presence of H2O2.  相似文献   

4.

In this paper, a crosslinked carboxymethyl starch (CCMS) was prepared with corn starch as the raw material, epichlorohydrin as the crosslinking agent, and chloroacetic acid as the etherifying agent through a series of crosslinking, alkalization, and etherification reactions, respectively. Nano-TiO2 was loaded onto the surface of the CCMS by the sol-gel method to obtain a TiO2/CCMS composite. The TiO2/CCMS composite was characterized by XPS, XRD, SEM, and BET. XPS showed that the surface chemical composition of the TiO2/CCMS composite material contained titanium; XRD diffraction patterns indicated that the crystal form of the TiO2/CCMS composite was a combination of the CCMS and anatase TiO2. The surface morphology obtained by SEM showed that there were nano-TiO2 particles on the surface of the CCMS. The specific surface area of the TiO2/CCMS composite was larger than that of CCMS. The adsorption-photodegradation performance of the TiO2/CCMS composite was also studied under UV irradiation, and the results showed that significant adsorption-photodegradation synergies occurred.

  相似文献   

5.
纳米Bi2O3/TiO2复合光催化剂的制备及性能研究   总被引:1,自引:1,他引:0  
以光催化效果为评价标准,采用超声波作用下水解法制备Bi2O3/TiO2复合光催化剂,考察了水解条件和Bi2O3掺入量等制备条件对复合光催化剂性能的影响。结果表明,与传统制备方法相比,该方法操作简单、快速;当水和乙醇的比例为4∶1时所得样品的光催化活性最好;Bi2O3的掺入拓宽了TiO2对光的吸收范围,提高了TiO2的光催化活性,掺入量(Bi2O3)为0.25%复合光催化剂催化活性最高;复合光催化剂对多种水溶性染料均具有较好的处理效果。  相似文献   

6.
Zhang Y  Xiong X  Han Y  Zhang X  Shen F  Deng S  Xiao H  Yang X  Yang G  Peng H 《Chemosphere》2012,88(2):145-154
Photoelectrocatalytic (PEC) technology involved applying an electrical bias to a TiO2 film electrode, has been widely applied to the degradation of refractory organic pollutants, owing to its high degradation efficiency. This paper reviews recent developments in the PEC degradation of recalcitrant organic contaminants using a TiO2 film electrode. The preparation and application of various TiO2 film electrodes have been investigated, as well as the parameters that influence PEC activity such as the crystal structure, the film thickness and substrate material, the applied electrical bias, the solution pH and conductivity. The improvement of PEC activity by doping the TiO2 film electrode with metal and non-metal ions has been discussed. The mechanism and kinetics for the PEC degradation of organic pollutants have also been highlighted.  相似文献   

7.

In present study, an efficient ternary Ag/TiO2/mesoporous g-C3N4 (M-g-C3N4) photocatalyst was successfully synthesized through depositing Ag nanoparticles (NPs) on the surface of TiO2/M-g-C3N4 heterojunction. Ag/TiO2/M-g-C3N4 nanocomposite displayed the highest degradation efficiency for amoxicillin (AMX) compared to TiO2/M-g-C3N4 heterojunction, M-g-C3N4, and bulk-g-C3N4 (B-g-C3N4). The removal efficiency of AMX in real situation, surface water (SW), hospital wastewater (HW), and waste water treatment plant (WWTP) also were studied to illustrate the effectiveness of Ag/TiO2/M-g-C3N4 photocatalysts. The vulnerable atoms in AMX structure were revealed through DFT calculation. Additionally, the dominating active groups produced in time of the photocatalytic procedure were determined on account of free radical trapping experiments and ESR spectra. The mechanism of photocatalytic degradation was proposed and verified. The transfer of the electrons and the inhibition of the recombination of photogenerated electron-holes were enhanced effectively under the synergistic effect of the Ag NPs and TiO2. As a consequence, the catalytic activity of the composite was improved under visible light.

  相似文献   

8.
The anatase/schorl composites were prepared and employed for the photocatalytic discoloration of an azo dye, Methyl Orange (MO). X-ray diffraction results indicated that TiO2 existed in the form of anatase phase and no diffraction peaks of schorl could be observed for all the composite samples. Scanning electron micrographs showed that the particles of anatase were well deposited and dispersed on the surface of schorl. Photocatalytic experiments revealed that the anatase/schorl composites exhibited higher photocatalytic activity for MO discoloration than pure TiO2 and more than 90 % discoloration ratio could be obtained within 60 min UV irradiation when the sample containing 3 wt.% of schorl as TiO2 support was used. Then, the central composite design (CCD) under the response surface methodology (RSM) was employed for the experiment design and process optimization. The significance of a second-order polynomial model for predicting the optimal values of MO discoloration was evaluated by the analysis of variance (ANOVA) and 3D response surface plots for the interactions between two variables were constructed. Based on the model prediction, the optimum conditions for the photocatalytic discoloration of MO by TiO2/schorl composite were determined to be 15?×?10?3 mM MO initial concentration, 2.7 g/l photocatalyst dosage, solution pH 6.6 and 43 min reaction time, with a maximum MO discoloration ratio of 98.6 %. Finally, a discoloration ratio of 94.3 % was achieved for the real sample under the optimum conditions, which was very close to the predicted value, implying that RSM is a powerful and satisfactory strategy for the process optimization.  相似文献   

9.
通过X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外可见光漫反射谱(UV-vis)对碳纳米管/二氧化钛/壳聚糖复合薄膜的晶体结构和形貌进行表征,以室内空气典型污染物气相苯为模型反应物,研究碳纳米管/二氧化钛/壳聚糖催化薄膜的光催化活性及其对苯的光降解机理。结果表明,制备的碳纳米管/二氧化钛/壳聚糖催化薄膜所具有的良好催化活性归功于碳纳米管、二氧化钛和壳聚糖三者的协调效应;气相苯光降解产生的主要中间产物是乙酸乙酯和十一烷,以及少量的丙烯醛、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二叔丁基苯酚、二十一烷烃。根据红外光谱分析与GC/MS分析结果,进一步提出了气相苯的降解机理过程。  相似文献   

10.
纳米TiO2/活性炭复合光催化剂的制备及其对甲醛气体降解   总被引:2,自引:2,他引:0  
研究了纳米TiO2/活性炭复合光催化剂对空气中典型污染气体甲醛的光催化降解特性。采用扫描电镜(SEM)表征复合催化剂的表面特征。结果显示,经改性后的纳米TiO2在复合催化剂表面分布均匀,呈球状。对甲醛气体的降解实验显示TiO2负载量为1%时对甲醛的去除效果最好,6 h去除率为61.7%。结果显示复合催化剂把甲醛气体分解成CO2,可以直接排空,无二次污染。  相似文献   

11.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

12.
The toxicity of dietary exposure to artificially aged TiO2 nanomaterial (T-Lite?) used in sunscreen cream was studied on Danio rerio. Embryolarval assays were conducted to assess the effects of TiO2 residues of nanomaterial (RNM) on fish early life stages. Juvenile fishes were exposed by the trophic route in two experiments. During the first experiment, juvenile fishes were exposed to TiO2 RNM for 14 days by adding RNM to commercial fish food. The second one consisted in producing a trophic food chain. Pseudokirchneriella subcapitata algae, previously contaminated with TiO2 RNM in growth medium, was used to feed Daphnia magna neonates over a 48-h period. Daphnia were used next to feed juvenile fishes for 7 days. Accumulation of Ti, life traits (survival and growth) and biochemical parameters such as energy reserves, digestive (trypsin, esterase, cellulose and amylase) and antioxidant (superoxide dismutase and catalase) enzyme activity were measured at the end of exposures. As expected in the receiving aquatic system, TiO2 RNM at low concentrations caused a low impact on juvenile zebrafish. A slight impact on the early life stage of zebrafish with premature hatching was observed, and this effect appeared mainly indirect, due to possible embryo hypoxia. When juvenile fish are exposed to contaminated food, digestive enzyme activity indicated a negative effect of TiO2 RNM. Digestive physiology was altered after 14 days of exposure and seemed to be an indirect target of TiO2 RNM when provided by food.  相似文献   

13.
TiO2:Nb nanopowders within a dopant concentration in the range of 0.1?C15?at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer?CEmmett?CTeller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO2-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9?m2/g for TiO2:0.1?at.% Nb to 90.0?m2/g for TiO2:15?at.% Nb. TiO2:Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31?eV and rutile-related one at 3.14?eV. TiO2:Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO2-P25, improved photocatalytic activity of TiO2:Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb?<?1?at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO2. Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO2:Nb (Nb?<?1?at.%) can be proposed as an efficient selective solar light photocatalyst.  相似文献   

14.
This study has been undertaken to investigate the relationship between Pd oxidation states on TiO2 photocatalysts and their photocatalytic oxidation behaviors of NO. Three types of Pd-modified TiO2 with different Pd oxidation states were prepared by wet impregnation method, neutralization method and photodeposition method, respectively. And these Pd-modified photocatalysts were characterized by X-ray diffraction analysis, X-ray photoelectron spectrum analysis (XPS), UV–Vis diffuse reflectance spectra and temperature programmed desorption (TPD). It was found from XPS results that the dominant oxidation states of Pd on these Pd-modified TiO2 catalysts were Pd2+, PdO, and Pd0, respectively. NO-TPD results showed that the NO adsorption capacity was improved greatly by the modification of Pd2+ ions. The activity tests showed that Pd-modified TiO2 by a wet impregnation method increased photocatalytic activity compared to pure TiO2 (Degussa P25). It was concluded that Pd2+ ions on as-prepared TiO2 catalysts provided key contributions to the improvement of photocatalytic activity. However, Pd0 and PdO deposits on TiO2 almost had no positive effect on NO oxidation. The mechanism of photocatalytic oxidation of NO in gas phase over Pd-modified TiO2 was also proposed.  相似文献   

15.

Herein improved solar light–driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV–visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed?~?3.45- and?~?1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.

  相似文献   

16.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

17.

In this work, hexadecyltrimethylammonium-bromide (HTAB)-modified polythiophene (PTh)/TiO2 nanocomposite (HTAB/PTh/TiO2) was applied to remove uranyl ions (UO22+). FT-IR, XRD, ζ potential, TGA, SEM, and XPS were utilized to obtain the chemical and physical properties of HTAB/PTh/TiO2. The effects of HTAB content, preparation temperature, and adsorption conditions on UO22+ removal were investigated comprehensively. And the UO22+ adsorption process on HTAB/PTh/TiO2 was fitted to the Sips model with a saturated adsorption capacity of 234.74 mg/g, which was 6 times over TiO2. The results suggested that the surfactant of HTAB can significantly improve the adsorption ability of TiO2 for UO22+ ions. This work provides a strategy of surfactant modification for enhancing the separation and recovery ability of adsorbent toward UO22+ in the radioactive wastewater.

  相似文献   

18.
以钛酸四丁酯为原料,空心微珠为载体,采用溶胶凝胶法制备TiO2/beads光催化剂载体,然后浸渍法制备出H4SiW12O40/TiO2/beads表面负载修饰型复合光催化剂,并运用SEM、XRD、FT-IR和DRS对催化剂进行表征和分析。研究了H4SiW12O40/TiO2/beads对亚甲基蓝降解的光催化活性,考察了光强度、pH值、曝气量、底物浓度和催化剂用量等对催化效率的影响。实验结果表明,在中性条件下,H4SiW12O40/TiO2/beads催化剂的投加量为0.25 g/L,浓度为7.5 mg/L的亚甲基蓝溶液在250 W的紫外灯和600 W的可见光灯下光照60 min降解率分别可达到94.5%和55%。  相似文献   

19.
Song C  Chen P  Wang C  Zhu L 《Chemosphere》2012,86(8):853-859
Degradation of perfluorooctanoic acid (PFOA) is of great importance due to its global distribution, persistence and toxicity to bioorganisms. In present study, a composite TiO2 with multiple wall carbon nano-tubes (MWCNTs) was synthesized using sol-gel method and it was used as photocatalyst to degrade PFOA in water. The prepared composite catalyst displayed significant absorption in UV to visible light region. The loading content of TiO2 on MWCNTs could be adjusted by changing the ratio of precursor to MWCNTs. Due to the combined effect of the adsorption ability and e transport capacity of MWCNT, the composites displayed much higher photocatalytic ability to PFOA as compared to pure TiO2 under UV irradiation. The photocatalyst prepared with 10:1 of tetrabutyl titanate/MWCNT was the most effective. With the optimal dosage at 1.6 g L−1, almost 100% of PFOA was degraded in acid medium after irradiation for 8 h. It was proposed that PFOA were mainly degraded by stepwise losing a moiety of CF2.  相似文献   

20.
TiO2-supported activated carbon felts (TiO2–ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2–ACFTs with 29–35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2–ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m2/g, respectively, whereas the TiO2–ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m2/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2–ACFT samples under UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号