首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pioneer plant species were observed growing on mined areas despite unfavourable conditions such as extreme pH, high salinity and phytotoxic levels of several elements. This study evaluated the contribution of pioneer species to the accumulation of soil organic matter (SOM). We collected 51 samples from 17 non-vegetated, natural and pioneer-vegetated sites in five highly saline mined areas in the Sierra de Cartagena (Spain). The composition of SOM was determined using total C, N and S elemental anlayzer, pyrolysis and solid state (13)C NMR spectroscopy. Results showed that pioneer species like Lygeum spartum had contributed approximately 11 kg SOM kg(-1) soil into the Balsa Rosa sites since 1991; it will take approximately 120 years of continuous growth for this plant to increase the SOM level comparable to natural site. In the Portman Bay area, Sarconia ramosissima and Phragmites australis can contribute SOM equivalent to present day SOM in natural sites in the next 30 years. Low quality SOM (C/N>20) deposited by pioneer plants was dominated by lignin-derived organic compounds such as phenols, guaiacols, syringols and aromatics while polyssacharides and alkyls were the major components in high quality SOM (C/N<20). The addition of SOM to mine wastes is similar to early stages of soil formation and with time, we expect the formation of well-developed Ah horizon on the surface of mine wastes. The presence of P. australis on several sites makes it a very good candidate for successful revegetation of hostile conditions found in many mined sites.  相似文献   

2.
Hseu ZY 《Chemosphere》2006,64(10):1769-1776
In the application of biosolids on agricultural lands, 4-nonylphenol (4-NP) in soils is an important environmental concern because of its associated estrogenic risk to animals and human beings. Incubation experiments that involved the mixing of two contrasting soils (A: calcareous sandy soil; B: acidic clayey soil) and biosolids in 4-NP were performed to examine the effect of 4-NP on the rate of production of CO2, the mineralization of N and the microbial biomass, by considering the biodegradation of 4-NP for the evaluation of soil health. The experimental results indicated that the half-life (t1/2) of 4-NP increased with the supplementary concentration of 4-NP (80, 160 and 240 mg kg(-1)) in the two soils, and the t1/2 values in the soil A are always lower than that in soil B. The 4-NP supplement in the biosolids reverses C mineralization in soil B more than it does in soil A, but it reverses N mineralization in soil A more than in soil B. The aeration status and microbial population of the biosolids treated soils are key factors in determining the time course of 4-NP degradation associated with the microbial activities. The 4-NP was biodegraded mainly by bacteria, and the effect on C and N mineralization of 4-NP input is determined by a balance of the reductions in microbial biomass C (MBC) and N (MBN). After destruction in microbial cell membrane and protein structures by the 4-NP, C and N mineralization, MBC and MBN were subsequently followed by a final decline phase for the later period of incubation.  相似文献   

3.
Kao PH  Huang CC  Hseu ZY 《Chemosphere》2006,64(1):63-70
Application of biosolid on land has been widespread in numerous countries for last several decades. This study performed incubation experiments by mixing a neutral loamy soil and biosolid enriched in Cu, Pb and Zn to explore how heavy metal affects soil mineralization and microbial biomass. The experimental results indicated that large nutrient, microorganism and C sources from biosolid were beneficial to microbial respiration. However, compared to the biosolid alone treatment, the supplemented Cu, Pb and Zn in biosolid reduced the mineralized C by roughly 36%. This phenomenon was probably caused by a portion of the Cu, Pb and Zn being complexed with organic matter to prevent decomposition of organic carbon by microorganisms. Equally, soil treated with biosolid increased the quantity of mineralized N by approximately five-fold and accelerated the rate of N mineralization by about one-fold compared to untreated soil. Notably, addition of heavy metals impaired the mineralization process, particularly when Pb reached about 64%. The reduced N mineralization occurred for similar reasons to the microbial respiration. The addition of biosolid in soil considerably increased the amount of mineralizable N; however, the increase was lower in biosolid-treated soil spiked by heavy metals. The addition of heavy metals in the soil-biosolid mixture clearly reduced the microbial biomasses C (MBC) and N (MBN), indicating that the microbial activities had been disrupted by the heavy metals. The microbial biomass C/N ratio had changed initially from 8 to 13 at the end of incubation period, owing to various groups of microbes expressing different mechanisms of metabolism, indicating that the microbial population had changed from bacteria to fungi, which had higher metal tolerance.  相似文献   

4.
Chiang PN  Wang MK  Chiu CY  King HB  Hwong JL 《Chemosphere》2004,54(2):217-224
The carbon isotope analysis [delta13C values] of organic samples can be a useful research in ecological studies because delta13C values are indicative of the plant source. This study investigated the changes in plant communities along the grassland-forest boundary in the alpine forest at Ta-Ta-Chia long term ecological research (LTER) site in central Taiwan using carbon isotope data. The aim of this study was focused on the forest fire affected the change of vegetation community. Four pedons from grassland dominated by Miscanthus transmorrisonensis (pedons 1 and 2), transition zone by Tsuga and Yushania nittakeyamensis (pedon 3), and forest zone by Tsuga and nittakeyamensis (pedon 4) were examined. Soil organic matter (SOM) delta13C values in the upper soil horizon were similar to delta13C values of the overlaying vegetation types. This indicates that the boundary between these plant communities remained the same in the past decades. The delta13C values of the grassland SOM ranged from -19.4 per thousand to -24.1 per thousand, showing decrease with soil depth. This suggests that C4 plants (transmorrisonensis) have replaced C3 plants of Tsuga and nittakeyamensis. The delta13C values of the Tsuga forest area (pedon 4) range from -27.0 per thousand to -23.5 per thousand and showed only slight change with soil depth, implying that C3 plants have remained the major species in the forest.  相似文献   

5.
Sorption of naphthalene and phenanthrene by soil humic acids   总被引:26,自引:0,他引:26  
Humic acids are a major fraction of soil organic matter (SOM), and sorption of hydrophobic organic chemicals by humic acids influences their behavior and fate in soil. A clear understanding of the sorption of organic chemicals by humic acids will help to determine their sorptive mechanisms in SOM and soil. In this paper, we determined the sorption of two hydrophobic organic compounds, naphthalene and phenanthrene by six pedogenetically related humic acids. These humic acids were extracted from different depths of a single soil profile and characterized by solid-state CP/MAS 13C nuclear magnetic resonance (NMR). Aromaticity of the humic acids increased with soil depth. Similarly, atomic ratios of C/H and C/O also increased with depth (from organic to mineral horizons). All isotherms were nonlinear. Freundlich exponents (N) ranged from 0.87 to 0.95 for naphthalene and from 0.86 to 0.92 for phenanthrene. The N values of phenanthrene were consistently lower than naphthalene for a given humic acid. For both compounds, N values decreased with increasing aromaticity of the humic acids, such an inverse relationship was never reported before. These results support the dual-mode sorption model where partitioning occurs in both expanded (flexible) and condensed (rigid) domains while nonlinear sorption only in condensed domains of SOM. Sorption in the condensed domains may be a cause for slow desorption, and reduced availability and toxicity with aging.  相似文献   

6.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of (14)C labeled isoproturon have been determined in two Moroccan soils by beta -counting-liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

7.
The knowledge on the distribution of hydrophobic organic contaminants in soils can provide better understanding for their fate in the environment. In the present study, the n-butanol extraction and humic fractionation were applied to investigate the impact of SOM on the distribution of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 80.5%-94.8% of the target PAHs could be extracted by n-butanol and 63.1%-94.6% of PAHs were associated with fulvic acid (FA). Concentrations of un-extracted PAHs increased significantly with the increasing soil organic matter (SOM), however, such an association was absent for the extractable fractions. The results suggested that the sequestration played a critical role in the accumulation of PAHs in soils. SOM also retarded the diffusion of PAHs into the humin fractions. It implied that sequestration in SOM was critical for PAH distribution in soils, while the properties of PAH compounds also had great influences.  相似文献   

8.
The incubation of the model pollutant [U-14C]'-4-fluorobiphenyl (4FBP) in soil, in the presence and absence of biphenyl (a co-substrate), was carried out in order to study the qualitative disposition and fate of the compound using 14C-HPLC and 19F NMR spectroscopy. Components accounted for using the radiolabel were volatilization, CO2 evolution, organic solvent extractable and bound residue. Quantitative analysis of these data gave a complete mass balance. After sample preparation. 14C-HPLC was used to establish the number of 4FBP related components present in the organic solvent extract. 19F NMR was also used to quantify the organic extracts and to identify the components of the extract. Both approaches showed that the composition of the solvent extractable fractions comprised only parent compound with no metabolites present. As the 14C radiolabel was found to be incorporated into the soil organic matter this indicates that metabolites were being generated, but were highly transitory as incorporation into the SOM was rapid. The inclusion of the co-substrate biphenyl was to increase the overall rate of degradation of 4FBP in soil. The kinetics of disappearance of parent from the soil using the data obtained were investigated from both techniques. This is the first report describing the degradation of a fluorinated biphenyl in soil.  相似文献   

9.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of 14C labeled isoproturon have been determined in two Moroccan soils by β -counting–liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

10.
The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO2] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO2 enrichment technology was used to investigate the effects of elevated [CO2] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO2 enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO2 treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO2 treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO2-stimulated photosynthesis.  相似文献   

11.
The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C4 plant) replaced C3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (delta13C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C4 organic matter in the bulk fractions: M3 (0.9)>M2 (0.4)>M1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C3 SOM of the clay fraction, is more easily degraded by microorganisms.  相似文献   

12.
13.
A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems.  相似文献   

14.
The effect of sewage sludge on the mobility and the bioavailability of trace metals in plant-soil systems have aroused wide interested and been widely explored. Based on a wheat-cultivating experiment, the effect of municipal sludge compost (MSC) on the mobility and bioavailability of Cd in a soil-wheat system was studied. With the application of MSC, soil organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) in the soil increased significantly, while concentrations of trace metals (Cu, Zn, Ni, Pb, Cd) were below the China’s minimum thresholds. The application of MSC could improve wheat growth. The application of MSC at the rate of 0.5 % had no significant effect on the chemical fraction distribution of Cd in soil. In two soil treatments, Cd mainly existed in the labile chemical fractions (exchangeable chemical fraction (EXCF) and carbonate chemical fraction (CABF)). However, the application of MSC could reduce accumulation of Cd by wheat. Cd contents in each part of the MSC-applied wheat were significantly less than that of non-MSC-applied wheat. In the tested soils, the extractable concentrations decreased in the order: EDTA > MgCl2 ≈ NH4OAc > DTPA. There were no significant differences between soil treatments in the amounts of extractable Cd when the extraction was done under neutral conditions, although significant differences were observed when the extraction was done under alkaline conditions. In this study, the DTPA extraction procedure provided a good indication of Cd bioavailability. Our results suggest that, in the short term at least, amending soils with MSC may benefit crop dry matter production while not increasing the risk of human exposure to Cd through consumption of wheat grown on MSC-amended soils.  相似文献   

15.
The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 degrees C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 microm) supernatants. For the samples equilibrated at 90 degrees C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 microm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 degrees C; however, at 90 degrees C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 degrees C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu was complexing with large polymers that could form at the elevated temperature, and thus be removed from the analyzed solution. It is possible that Cu and Al released by SOM oxidation has re-sorbed or complexed to more recalcitrant organic matter or to mineral phases. Variations in the relative molecular size fractions present within the DOC pool produced by increased time and temperature may influence the element-DOC complexes present in solution and their behavior in soil environments.  相似文献   

16.
Changes in soil organic matter chemical properties after organic amendments   总被引:1,自引:0,他引:1  
Sebastia J  Labanowski J  Lamy I 《Chemosphere》2007,68(7):1245-1253
Organic inputs are used to improve soil physical and chemical properties, but the corresponding changes in soil organic matter (SOM) chemical properties are not well known. In this study, we compared some characteristics of the SOM of a soil receiving either no organic inputs, or two different amendments during 15 years (straw or conifer compost). Quantities of organic carbon and C/N values were determined on particle size fractions after physical soil fractionation to localize changes due to amendments. Contents in reactive functional groups, acid-base properties and copper binding affinities were determined by titration experiments for the soluble fraction of SOM: the fulvic acid fraction (FA). Data of FA extracted from the bulk soil were compared to data of FA extracted from the <20 microm size fraction with the help of either a discrete or a continuous model (fit of data with FITEQL or NICA, respectively). Copper binding characteristics of FA extracted from the <20 microm size fraction did not change significantly after organic inputs, while those of FA extracted from the bulk organic-amended soils were found different from the ones with no amendment. Minor effects observed in the finer soil fractions were ascribed to their low turn-over of organic carbon and/or to a greater homogeneity in the nature of the organic carbon entering these fractions. Our results show major chemical changes in coarser soil organic fractions after organic amendments.  相似文献   

17.
Lee JK  Führ F  Kwon JW  Ahn KC 《Chemosphere》2002,49(2):173-181
In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil.  相似文献   

18.
The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.  相似文献   

19.
Dilly O  Blume HP  Sehy U  Jimenez M  Munch JC 《Chemosphere》2003,52(3):557-569
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients.  相似文献   

20.
Changes in bioavailability of pyrene in three uncontaminated soils were examined under aerobic and anaerobic conditions. Three soils were aerobically aged with pyrene and [(14)C]pyrene for 63 days, then incubated with water, nitrate, or sulfate under aerobic or anaerobic conditions for one year. Under aerobic conditions, microorganisms in two soils mineralized 58-82% of the added [(14)C]pyrene. The two soils amended with nitrate were seen to have enhanced aerobic mineralization rates. In one of these soils, non-extractable pyrene was seen to decrease over the course of the study due to desorption and mineralization, nitrate amendment enhanced this effect. Under anaerobic conditions, generated with a N(2):CO(2)(g) headspace, two soils with nitrate or sulfate amendment showed an increase in extractable [(14)C]pyrene at 365 days relative to inhibited controls, presumably due to microbially mediated oxidation-reduction potential and pH alteration of the soil environment. These observations in different soils incubated under aerobic and anaerobic conditions have important implications relative to the impact of microbial electron acceptors on bioavailability and transport of non-polar organic compounds in the environment suggesting that, given enough time, under the appropriate environmental conditions, non-extractable material becomes bioavailable. This information should be considered when assessing site specific exposure risks at PAH contaminated locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号