首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11–20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems.  相似文献   

2.
Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10% (g/g) compost containing 16.9 mg CO2/g dry weight organic carbon resulted in soil temperatures that were 2–4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.  相似文献   

3.
Climate change has become an important political priority in the environmental field, and beyond. To revert the increase in the Earth’s temperature, developed country parties to the Kyoto Protocol committed to limit their greenhouse gas emissions. The 15 Member States that made up the European Community in 1997 have a combined reduction target of 8% in CO2-equivalent emissions in the period 2008–2012 compared to 1990. The role of soil, both as a source and a sink for carbon, is particularly important. How can soil organic matter be maintained or increased? There is no single answer, and a broad range of options need to be explored. Among the different measures proposed, the promotion of organic input on arable land (crop residues, cover crops, farm yard manure, compost, sewage sludge) has been mentioned. The challenge is to ensure that organic wastes of good quality are used to increase soil organic matter in carbon depleted soils and that appropriate monitoring is established. On the waste management front, the European Commission intends to produce guidance for Member States on the management of biowaste that will take into account all related environmental issues, including soil aspects. As for monitoring, the European Commission has put forward legislation according to which Member States would have to identify the areas at risk of soil organic matter decline in their national territory. Such legislation should be regarded as a major step forward for Europe, as it would ensure a high level of soil protection across the Community. This development will have the potential to enable the kind of estimation, measurement or modelling of crop or grazing land management needed for accounting under Article 3.4 of the Kyoto Protocol.  相似文献   

4.
A field study was conducted to compare the effectiveness of land treatment and mesophilic composting in removing aged polycyclic aromatic hydrocarbons (PAH) from soil. The soil composting treatment, which had 20 percent (w/w) fresh organic matter incorporated into the soil, reached mesophilic temperatures of 45 to 50°C at week 3–4 and was effective in reducing PAH from 2240 mg/kg to 120 mg/kg after 224 days of treatment. Conventional land treatment with and without added cow manure (5 percent w/w) was less effective in removing the PAH from the soil than was the mesophilic soil composting treatment. In a parallel laboratory trial, PAH concentrations were reduced below 500 mg/kg (the target cleanup concentration for the site) when the contaminated soil was amended with 20 to 30 percent (w/w) fresh organic matter after 186 days of treatment. PAH degradation was lower in the laboratory trial compared with the field trial and no self-heating of soil was demonstrated in the laboratory. Based on the relatively high total heterotrophic and naphthalene-degrading microbial populations in the nonsterile treatments, it was apparent that the absence of microorganisms was unlikely to have limited the biodegradation of PAH in the current study. Fresh organic matter amendments of green tree waste and cow manure, regular mixing of the compost, and maintenance of moisture by regular watering were critical factors in achieving the target PAH concentrations.  相似文献   

5.
Factors influencing soil profile nitrogen storage (SPNS) in GB have been investigated. The SPNS values of moorland peats and podzols in the South Pennines, of permanent grassland in Yorkshire, and of adjacent arable-, semi-permanent grassland- and ancient woodland-soils in Worcestershire have been compared to assess land use effects. The soils exhibited similar SPNS values, because changes in bulk density and organic matter composition offset increases in N concentrations in highly organic soils. Data from the Soil Survey of Scotland were used to show effects of soil parent material on SPNS were also small. Data on Scottish podzol soils under heather moorland and derived from sandstone or quartzite were used to show that SPNS declined with increasing precipitation, but increased with the amount of pollutant N deposited from the atmosphere.  相似文献   

6.
Factors influencing soil profile nitrogen storage (SPNS) in GB have been investigated. The SPNS values of moorland peats and podzols in the South Pennines, of permanent grassland in Yorkshire, and of adjacent arable-, semi-permanent grassland- and ancient woodland-soils in Worcestershire have been compared to assess land use effects. The soils exhibited similar SPNS values, because changes in bulk density and organic matter composition offset increases in N concentrations in highly organic soils. Data from the Soil Survey of Scotland were used to show effects of soil parent material on SPNS were also small. Data on Scottish podzol soils under heather moorland and derived from sandstone or quartzite were used to show that SPNS declined with increasing precipitation, but increased with the amount of pollutant N deposited from the atmosphere.  相似文献   

7.
This paper serves two purposes: it provides a summarized scientific history of carbon sequestration in relation to the soil-plant system and gives a commentary on organic wastes and SOC sequestration.The concept of soil organic carbon (SOC) sequestration has its roots in: (i) the experimental work of Lundegårdh, particularly his in situ measurements of CO2 fluxes at the soil-plant interface (1924, 1927, 1930); (ii) the first estimates of SOC stocks at the global level made by Waksman [Waksman, S.A., 1938. Humus. Origin, Chemical Composition and Importance in Nature, second ed. revised. Williams and Wilkins, Baltimore, p. 526] and Rubey [Rubey, W.W., 1951. Geologic history of sea water. Bulletin of the Geological Society of America 62, 1111–1148]; (iii) the need for models dealing with soil organic matter (SOM) or SOC dynamics beginning with a conceptual SOM model by De Saussure (1780–1796) followed by the mathematical models of Jenny [Jenny, H., 1941. Factors of Soil Formation: a System of Quantitative Pedology. Dover Publications, New York, p. 288], Hénin and Dupuis [Hénin, S., Dupuis, M., 1945. Essai de bilan de la matière organique. Annales d’Agronomie 15, 17–29] and more recently the RothC [Jenkinson, D.S., Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123 (5), 298–305] and Century [Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal 51 (5), 1173–1179] models.The establishment of a soil C sequestration balance is not straightforward and depends greatly on the origin and the composition of organic matter that is to be returned to the system. Wastes, which are important sources of organic carbon for soils, are taken as an example. For these organic materials the following factors have to be considered: the presence or absence of fossil C, the potential of direct and indirect emissions of non-CO2 greenhouse gases (CH4 and N2O) following application and the agro-system which is being used as a comparative reference.  相似文献   

8.
Modification of soil humic matter after 4 years of compost application   总被引:2,自引:0,他引:2  
Two soil plots, 1 ha each, were amended yearly for 4 years, respectively, with 35.8 and 71.6 Mg ha(-1) yr(-1) of mature compost (CM) obtained from food and vegetable residues. The compost, amended soils, and a control soil plot after 4 years (S4), were analyzed for humin (HUC), humic acid (HAC), fulvic acid (FAC), and non-humic carbon (NHC) content. Compared to S4, the amended soil contained more humified C (HAC, FAC and HUC) and less NHC. Further evidence of the effect of compost on soil organic matter was obtained by the analysis of the humic acid (HA) fractions isolated from both the compost and the soils. These were characterized by elemental analyses and Diffuse Reflectance Infrared Fourier Transformed spectroscopy. The HAs isolated from CM and from S4 were significantly different. The HAs isolated from the amended plots were more similar to HA isolated from CM than to HA isolated from S4. The experimental data of this work indicate that the compost application may affect significantly the soil organic matter composition, and that the approach used in this work allows one to trace the fate of compost organic matter in soil.  相似文献   

9.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by‐products. An alternative bioremediation technology, which is cheaper and environ‐mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
This article presents the results of a study that was conducted to determine the effectiveness of using alfalfa (Medicago sativa L.) to enhance the phytoremediation of three different types of chemical contaminants. The chemicals studied were trinitrotoluene (TNT), the polycyclic aromatic hydrocarbon (PAH) pyrene, and the polychlorinated biphenyl (PCB) Aroclor 1248. Experiments were conducted using soils that contained high and low organic matter content. The results indicated that recoveries of pyrene and TNT from soil were highly dependent on the soil organic matter content, while the recovery of PCB was not. Significantly low levels of pyrene and TNT were recovered from all treatments in the soil with 6.3 percent organic matter content compared to recovery levels found in soil with 2.6 percent organic matter. The presence of alfalfa plants had a significant effect on the transformation of TNT and PCB in the low organic matter content soil only and had no effect on the fate of pyrene. In the low organic matter soil, only 15 percent and 17 percent of the initial TNT and PCB levels, respectively, were transformed in the unplanted control soils compared to 66 percent and 77 percent in the alfalfa planted pots. In both soil types, pyrene dissipation could not be attributed to the presence of alfalfa plants. Overall, it was concluded that under high soil organic matter conditions, adsorption and covalent binding to the soil organic matter appeared to be the dominant force of pyrene and TNT removal. The effectiveness of using alfalfa to enhance PCB and TNT transformations was more significant in the lower organic matter soil; thus phytoremediation had a greater effect in soils with lower organic matter content. © 2001 John Wiley & Sons, Inc.  相似文献   

11.
Measurements of TotHg (total mercury) and MeHg (methylmercury) in runoff from the covered catchment G1 and the reference catchment F1 at Lake Gårdsjön, Sweden, have been performed and evaluated. The roof over the covered catchment limits atmospheric deposition input of TotHg and MeHg and a response in runoff concentrations and transport was expected. Based on data from 10 yr of monitoring, no statistically significant change in runoff flux of TotHg or MeHg can be observed. A slight decrease in MeHg output in the covered catchment was observed after 2 yr of the experiment. This can be explained as a temporary effect caused by the roof construction. The main conclusion is that release of TotHg and MeHg from the forest soil is controlled by factors other that wet deposition input, for example the mineralisation of organic matter. Furthermore, there is no indication of a depletion of the Hg pool in the soil. In spring 1999, the reference catchment F1 was affected by forestry machinery significantly disturbing the forest soil layer in a limited area. This caused MeHg concentrations to increase dramatically in runoff and led to an increase of the annual transport by at least a factor of 3. This indicates that forestry and other activities that disturb forest soils may be important for controlling MeHg fluxes to aquatic ecosystems.  相似文献   

12.
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha?1 were incubated for 90 days at two temperatures: 5 and 35 °C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 23 factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 °C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E4/E6 ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E4/E6 ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA.  相似文献   

13.
Subsidence is a primary factor governing marsh deterioration in Mississippi River deltaic plain coastal marshes. Marsh surface-water level relationships are maintained primarily through soil organic matter accumulation and inorganic sediment input. In this study we examined the role of soil organic matter accumulation in maintaining marsh elevation in a brackish Spartina patens marsh. Measured rates of soil organic accumulation were compared to plant biomass production and soil respiration (carbon dioxide and methane emission) at the study sites. The study demonstrated the importance of plant biomass production to soil organic carbon accumulation in maintaining viable Spartina patens marshes in sediment-deficient coastal environments. The role of Mississippi River freshwater reintroduction in maintaining conditions for organic accretion is discussed.  相似文献   

14.
The application of biosolids such as sewage sludge is a concern, because of the potential release of toxic metals after decomposition of the organic matter. The effect of application of sewage sludge (Sw) and compost (C) to the soil (S) on the Cu and Cd sorption, distribution and the quality of the dissolved organic matter (DOM) in the soil, was investigated under controlled conditions. Visible spectrophotometry, infrared spectroscopy, sorption isotherms (simple and competitive sorption systems), and sequential extraction methods were used. The E4/E6 (lambda at 465 and 665 nm) ratio and the infrared spectra (IR) of DOM showed an aromatic behaviour in compost-soil (C-S); in contrast sewage sludge-soil (Sw-S) showed an aliphatic behaviour. Application of either Sw or C increased the Cu sorption capacity of soil. The Cd sorption decreased only in soil with a competitive metal system. The availability of Cu was low due to its occurrence in the acid soluble fraction (F3). The Cu concentration varied in accordance with the amounts of Cu added. The highest Cd concentration was found in the exchangeable fraction (F2). The Sw and C applications did not increase the Cd availability in the soil.  相似文献   

15.
Methane (CH(4)), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH(4) is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH(4) oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH(4) (V(max)) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O(2) from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O(2) and CH(4) in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH(4) slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O(2) decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N(2) and CO(2), may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O(2) under the natural condition may overestimate the penetration of O(2) into the soil cover layer and consequently overestimate the oxidation of CH(4).  相似文献   

16.
Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical “Picual” olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil.  相似文献   

17.
The influence of bulking agents on organic matter (OM) stability and nitrogen (N) availability in sewage sludge composts was investigated. The same sludge was composted on an industrial plant with different mixtures of bulking agents. The composting process included an active phase and a curing phase, both lasting 6 weeks, separated by the screening of composts. The OM evolution was characterised by carbon (C) and N mass balances in biochemical fractions. The OM stability and N potential availability of final composts were measured during soil incubations. During composting, the C and N losses reached more than 62% of the initial C and more than 45% of the initial N, respectively, due to C mineralisation or N volatilisation and screening. The bulking materials mostly influenced OM evolution during the active phase. They contributed to the mitigation of N losses during the active phase where N immobilisation through active microbial activity was favoured by bulking agents increasing the C:N ratio of the initial mixtures. However, the influence of bulking agents on OM evolution was removed by the screening; this induced the homogenisation of compost characteristics and led to the production of sludge composts with similar organic matter characteristics, C degradability and N availability.  相似文献   

18.
Impact of land use on soluble organic nitrogen in soil   总被引:1,自引:0,他引:1  
Although it has been hypothesized that soluble organic nitrogen (SON) plays a central role in regulating productivity in some terrestrial ecosystems, the factors controlling the size of the SON pool in soil remain poorly understood. Therefore our principal aim in this work was to assess the impact of seven different land use systems (rough and managed grassland, deciduous and coniferous woodland, heathland, wetland and tilled land) on the size of the SON and inorganic N (NO? 3, NH+ 4) pools in the surface soil layer (0–15 cm). After extraction with deionised water, we found that in most cases the size of the water extractable organic N (WEON) pool was similar in size to the inorganic N pool. In contrast, the KCl extractable organic N (KClEON) pool constituted the dominant form of soluble N in soils under all land uses, perhaps indicating that significant amounts were held on the soil exchange phase. In contrast to inorganic N, which varied significantly with land use, the size of the KClEON and WEON pool was similar for all land uses with the exception of KClEON in tilled land, where significantly lower amounts were observed. We conclude that SON constitutes an important soil N pool in a broad range of land uses, and that its role in microbial N assimilation, plant nutrition and ecosystem responses to atmospheric N deposition warrants further attention.  相似文献   

19.
Water-soluble extracts from compost may represent an alternative nutrient and organic matter source for crop production under drip irrigation. Dissolved organic matter (DOM), extracted from composted "alperujo", the main by-product from the Spanish olive oil industry, was applied to soil alone or in combination with either Glomus intraradices Schenck and Smith or a mixture of G. intraradices, Glomus deserticola (Trappe, Bloss. and Menge) and Glomus mosseae (Nicol and Gerd.) Gerd. and Trappe. Response measurements included mycorrhizal colonisation, nutrient uptake and growth of Medicago sativa and microbiological and physical properties in the rhizosphere. Dissolved organic matter was added to soil at concentrations of 0, 50, 100 or 300mgCkg(-1) substrate. During the four months of the experiment, the plants were harvested three times. Both mycorrhizal inoculation treatments significantly increased soil aggregate stability. Only the mycorrhizal inoculations increased microbial biomass C and protease and phosphatase activities and decreased water-soluble C, particularly the mixture of arbuscular mycorrhizal fungi. At the third harvest, the greatest increase in growth of M. sativa was observed in the inoculated plants with shoot biomass being 38% greater than for plants grown in the soil amended with the highest dose of DOM and 57% greater than for control plants. The addition of DOM was not sufficient to restore soil structure and microbial activity and did not affect the mycorrhizal development of introduced populations of arbuscular mycorrhizal fungi, but, depending on the dose, its fertiliser efficiency for improving plant growth was apparent.  相似文献   

20.
何俊  谢腾蛟  杨旅涵  程科 《化工环保》2012,40(4):388-395
以磷酸二氢钾(PDP)钝化后的重金属污染土壤为研究对象,通过室内土柱淋溶和土壤吸水实验,考察pH为3.1、4.6和5.1的模拟酸雨对污染土壤修复过程中重金属淋溶特征及土壤持水能力的影响。实验结果表明:PDP处理显著增加了淋出液的pH、电导率、TOC和正磷酸盐态磷(ZP)含量,在淋溶初期显著降低了淋出液的Cu、Cd和Pb含量,但在淋溶后期增大了Pb含量;土壤持水量与电导率、pH、TOC和ZP含量呈现极显著负相关性;土壤修复过程中,有机质的淋失、盐分含量及pH的增大可引起土壤持水能力的减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号