首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
溴代甲烷在SO42-/TiO2上的光催化降解   总被引:24,自引:0,他引:24  
采用溶胶-凝胶法制备了SO42-/TiO2催化剂,运用XRD、BET比表面测定,FTIR等技术对催化剂进行了表征,并在微型常压连续反应装置上进行CH3Br光催化反应性能考察.结果表明,SO42-引入TiO2体系使得催化剂的结构和光催化性能得到显著改善.SO42-负载量为9%,烧结温度为450℃时,SO42-/TiO2催化剂的光催化活性最高;SO42-/TiO2催化剂对反应物料中的水汽有很好的耐受性;当反应温度低于85℃时,提高反应温度,有利于改善对CH3Br的光催化反应活性,表观活化能约为19.6kJ·mol-1,反应温度在85℃~105℃区间时,CH3Br的光催化降解表观活化能为0.  相似文献   

2.
为探索浙江省中部地区大气细颗粒物(PM2.5)中水溶性离子的组成特征及其季节变化,采集了兰溪市市区和近郊两个站点2016年4个季节的PM2.5样品,利用双通道离子色谱对水溶性无机离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Ca2+、Mg2+)进行了定量分析.结果表明,兰溪PM2.5中离子总浓度存在明显的冬季高、夏季低的季节变化趋势,年均值为21.19 μg·m-3,约占PM2.5质量的45%;SO42-、NO3-和NH4+是水溶性离子中最主要的组分,年均浓度分别为8.11、5.92、3.87 μg·m-3.Cl-和NO3-浓度的季节变化最为显著,冬/夏浓度比接近10,其半挥发特性是导致兰溪PM2.5中离子组成呈现季节变化的重要原因.兰溪PM2.5中NO3-/SO42-比值的冬季平均值为1.18,说明流动源对兰溪PM2.5有很大贡献;夏季(以及春、秋季)时NO3-/SO42-比值较低,且与PM2.5浓度呈负相关,与矿物尘结合的硝酸根离子的较大贡献可能是导致夏季PM2.5浓度较低时NO3-/SO42-比值较高的主要原因.阴阳离子平衡、相关性及主成分分析(PCA)结果表明,矿物尘对兰溪市PM2.5的酸度及离子赋存状态有较大影响;冬季及春、秋季兰溪的PM2.5具有一定的酸性;NO3-和SO42-主要与NH4+结合,但部分可能与钙等其他组分结合;Cl-和K+主要来源于生物质燃烧,但K+的年均浓度仅为0.31 μg·m-3,说明生物质燃烧对兰溪PM2.5的贡献不大.  相似文献   

3.
基于2019年三亚城区站点PM2.5中水溶性离子在线观测数据,分析了水溶性离子的质量浓度水平、不同时间尺度和不同PM2.5浓度下的特征,探讨了气象因子对离子组分的影响,通过主成分分析(PCA)解析来源.结果表明:2019年三亚城区总水溶性离子(TWSI)质量浓度为8.173 μg·m-3,占ρ(PM2.5)的58.4%,各离子质量浓度大小依次为:ρ(SO42-) > ρ(NO3-) > ρ(K+) > ρ(NH4+) > ρ(Na+) > ρ(Cl-) > ρ(Ca2+) > ρ(F-) > ρ(Mg2+) > ρ(NO2-),其中二次离子SO42-、NO3-、NH4+(SNA)和K+为主要离子组分,占总水溶性离子的80.0%,海盐粒子Na+及Cl-之和占比为14.7%,且与风速呈显著正相关;TWSI季节浓度变化特征明显,秋季最高,春冬季次之,夏季最低,主要与秋冬季风速较大、主导风向转为东北风,易受外来传输有关;SO42-在各个季节均是浓度及占比最高的离子,硫氧化率(SOR)的日均值均大于0.1,存在显著的SO2向SO42-转化的过程;PCA分析结果表明三亚城区水溶性离子主要受海洋源、二次源及生物质燃烧源的影响.  相似文献   

4.
超顺磁性纳米Fe3O4@SiO2功能化材料对镉的吸附机制   总被引:1,自引:0,他引:1  
张立志  易平  方丹丹  王强 《环境科学》2021,42(6):2917-2927
含镉废水的处理对于重金属镉的排放控制具有重要的意义.通过共沉淀法制备出了超顺磁性纳米Fe3O4@SiO2功能化材料(MFS),采用等温吸附实验和动力学实验方法研究了MFS对Cd2+的吸附热力学和动力学特征,并借助BET、XRD和SEM等结构表征研究了MFS对Cd2+吸附过程及机制.结果表明,MFS对Cd2+有较好的吸附效果,Langmuir方程能极好地描述吸附等温特征,最大吸附容量值为69.49 mg·kg-1;吸附反应的自由能变ΔG、焓变ΔH和熵变ΔS表明MFS材料对Cd2+的吸附是自发、吸热和熵增的过程;反应体系最佳初始pH为7;溶液中的Mg2+、SO42-、Ca2+和NO3-这4种干扰离子对吸附反应存在一定的抑制作用;拟二级动力学模型表明MFS对Cd2+的吸附过程分为快速的外扩散阶段与缓慢的内扩散阶段;MFS吸附Cd2+后经洗脱再生,材料重复使用3次后对Cd2+去除率仍达73%以上.BET、XRD、FTIR和VSM结构表征表明SiO2成功修饰在Fe3O4表面,MFS主要成球状,平均粒径为38.7 nm,饱和磁化强度为85.38 emu·g-1;XRD、EDS和XPS图谱揭示Cd2+被成功吸附到材料上,主要机制为Cd2+与材料表面的—OH发生配位反应.  相似文献   

5.
PO43-和柠檬酸对稀土元素在小麦体内积累和分异的影响   总被引:1,自引:0,他引:1  
闫军才  梁涛  张自立  丁士明 《环境科学》2005,26(5):169-169-173
基于营养液培养,添加外源稀土和ICP-MS分析技术,研究了无机配体PO43-(Pi)及有机配体柠檬酸(Cit)对小麦器官中稀土元素积累和分异的影响.结果表明,不同Pi水平对小麦根中的稀土总含量(∑REE)影响较小,但显著降低叶中∑REE含量;而不同Cit水平对小麦根、叶中∑REE含量都有明显降低作用.对照植物(无Pi、Cit添加)中,稀土元素在小麦根中具有中稀土(MREE)富集及M-型四重效应分布特征,叶中有重稀土(HREE)富集及W-型四重效应分布特征.不同Pi处理对四重效应无明显作用,但进一步加强HREE在小麦叶片中的富集.添加柠檬酸使对照植物根和叶中的分异有逐渐减弱的趋势,在高浓度处理时(Cit≥150μmol·L-),小麦根和叶中出现轻稀土(LREE)富集.  相似文献   

6.
采用UV/H2O2间歇式光氧化反应器,研究了溶液pH值、腐殖酸及水中常见阴离子HCO3-、NO3-、CO32-、Cl-和SO42-对UV/H2O2工艺降解17α-乙炔基雌二醇(EE2)的影响.结果表明,UV/H2O2工艺可以有效地去除水中的EE2,光降解过程符合一级反应动力学模型.双氧水投加量为5 mg/L时,在14W低压汞灯照射下,EE2在自来水和蒸馏水中的光降解一级反应速率常数为0.063 0min-1和0.132 4min-1.溶液中的腐殖酸和阴离子HCO3-、NO3-、Cl-、SO42-对EE2的光降解反应有抑制作用,4种阴离子浓度为5 mmol/L时,抑制作用依次为HCO3->SO42->Cl->NO3-,HCO3-可使光降解速率常数降低到50%.自来水中的光降解速率常数低于蒸馏水中的光降解速率常数是水中多种离子影响的结果.  相似文献   

7.
依托河北省灰霾污染防治重点实验室,对2019年11月26日—12月31日石家庄市大气PM2.5中的NO3-和SO42-进行连续在线观测,研究NO3-和SO42-与环境空气相对湿度的相关性,解析冬季发生PM2.5重污染天气的RH阈值.观测期间,RH为10%~60%时,NO3-的浓度与RH呈显著正相关,为PM2.5中浓度最高的无机水溶性离子.RH超过70%后,NO3-与RH呈负相关,NO3-浓度和NOR开始下降.SO42-浓度与RH在整个湿度区间均呈正相关.RH低于50%时,SO2向SO42-的转化以气相反应为主.RH高于50%以后,颗粒物达到潮解点,SO2的主要反应转入液相,转化速率加快,SO2液相反应贡献逐渐增加至64.6%.RH超过70%后,SO42-成为PM2.5中浓度最高的无机水溶性离子.RH超过PM2.5潮解点以后,NO3-和SO42-大量合成,推高PM2.5环境浓度,易于形成重污染天气.  相似文献   

8.
采用MINTEQA 程序计算出在无机离子SO2-4 存在下,轻(La)、中(Gd)、重(Y)3 种稀土元素在溶液中的形态分布.研究了在水培条件下SO2-4 对3种稀土元素在小麦幼苗根、茎和叶部的积累规律.热力学实验表明,小麦幼苗在加SO2-4 的稀土元素溶液中培养30d 后,小麦根部对La、Gd 的积累受抑制,而对Y的积累却明显提高;加入SO2-4 后茎叶部对La、Y积累值改变不明显,但对Gd的积累有所增加.生长动态实验表明,在SO2-4 存在下,小麦幼苗根部对稀土的积累随时间增加而增加,其积累值符合线性递增函数方程,相关系数r> 0.94;而茎叶部最初积累能力较强,SO2-4 的加入对小麦植株动态吸收稀土规律无明显影响.  相似文献   

9.
间歇曝气对硝化菌生长动力学影响及NO-2积累机制   总被引:2,自引:2,他引:0  
采用间歇曝气方法处理低氨氮浓度生活污水,在SRT 10、 5、 2.5和1.25 d条件下,SBR反应器出水中NO-2含量(以N计,下同)为18、 19、 14和5 mg/L,积累率达到73%、 85%、 91%和78%,而连续曝气SBR仅为14%、 21%、 31%和34%;同时氨氮去除率维持在97%、 95%、 76%和39%,与连续曝气SBR的92%、 97%、 71%和47%相当.对硝化菌的生长动力学分析表明,在间歇曝气硝化系统中,氨氧化菌(AOB)可以通过产率系数(YAOB)的增加来提高自身在反应器中的绝对生物量,并补偿因间歇曝气引起的比底物利用速率下降,从而使比增殖速率(μm)和NH+4的氧化速率不变.与此相反,亚硝酸盐氧化菌(NOB)却不具备这种补偿特性,导致其μm和对NO-2氧化速率降低,引起了NO-2在出水中积累.  相似文献   

10.
水中无机阴离子对UV/H2O2降解LAS的影响及机理   总被引:2,自引:1,他引:1  
潘晶  孙铁珩  李海波 《环境科学》2007,28(11):2539-2543
研究了UV/H2O2工艺对直链烷基苯磺酸钠(LAS)的去除效果以及水中常见无机阴离子对LAS降解的影响和机理.结果表明,UV/H2O2工艺可以有效的去除水中LAS,光降解过程符合一级反应动力学模型.在H2O2投加量为8 mg·L-1,14 W低压汞灯照射下,LAS在蒸馏水和自来水中光降解速率常数分别为0.018 0 min-1和0.012 2 min-1;NO-3、Cl-、SO2-4和HCO-对LAS光降解有抑制作用,4种离子在浓度分别为5、10、15 mmol·L-1时,对LAS光降解的抑制程度均为HCO->NO-3>Cl->SO2-4;随着离子浓度增大,抑制作用增强;自来水中的光降解速率常数低于蒸馏水中的光降解速率常数是由于水中多种离子影响的结果.  相似文献   

11.
广州地区SO42-、NO3-、NH4+与相关气体污染特征研究   总被引:7,自引:2,他引:5  
本文获得了2009年12月1日至2011年12月31日广州二次无机离子(SO2-4、NO-3、NH+4)及相关反应性气体(NOx/SO2/HNO2/HNO3等)的小时浓度数据,并分析了其污染特征.研究结果表明:PM2.5的浓度季节变化特征为冬秋春夏,SO2-4的浓度季节变化特征为秋冬春夏,NH+4的为冬秋春夏,NO-3则为冬春秋夏,SO2-4、NO-3和NH+4之和占PM2.5的比重大小为秋夏春冬;硫氧化率(SOR)均大于0.1,秋冬季节的值高于春夏季节,与SO2-4的浓度变化趋势一致;氮氧化率(NOR)日变化呈单峰形式,最大值出现在06时,最小值出现在14时,春冬季节的值高于夏秋季节,与NO-3的浓度变化趋势一致;广州地区NH3/NH+4除10—12月外,其月均值均大于1;在典型过程中,SO2-4、NO-3、NH+4、SOR、NOR和NH3/NH+4与能见度的变化都存在较好的对应关系,说明广州地区低能见度与二次离子(SO2-4、NO-3、NH+4)的生成有关.  相似文献   

12.
两种微藻胞外分泌物与NO2-、NO3-对2,4-D光解的影响   总被引:1,自引:1,他引:0  
在模拟太阳光照射下,利用旋转式光化学反应装置,研究了海水小球藻(Chlorella vulgaris)和新月菱形藻(Nitzschia closterium)的胞外分泌物(EOM),以及分别在NO-2或(和)NO-3共存条件下对2,4-二氯苯氧乙酸(2,4-D)光解的影响.实验结果表明,2,4-D在海水小球藻和新月菱形藻EOM及分别在NO-2、NO-3共存下的光解过程均符合准一级动力学反应.研究发现,2,4-D的光解速率随海水小球藻和新月菱形藻EOM浓度的增加而减小,表明这两种微藻EOM可抑制海水中2,4-D的光解.当在微藻EOM溶液中分别加入不同浓度的NO-2或NO-3后,微藻EOM对2,4-D光解的抑制作用减弱,且随着NO-2和NO-3浓度的增加,2,4-D光解速率明显增加.特别是当微藻EOM与NO-2或NO-3三者共存时,可进一步促进2,4-D的光解.  相似文献   

13.
一种新型电化学法处理硝态氮废水的初步研究   总被引:2,自引:0,他引:2  
叶舒帆  胡筱敏  张杨  董俊 《环境科学》2010,31(8):1827-1833
通过对Pd-Me双金属催化还原NO 3--N和折点氯化法处理NH 4+-N的相关理论分析,提出了一种基于电化学法的新型NO 3--N废水处理工艺.即利用具有电子空轨的常见金属元素修饰Ti基获得催化阴极,在电场的作用下,将NO 3--N催化还原;通过调整催化元素的配比和电解条件,控制NO 3--N还原产物主要为NH 4+-N;利用阳极氧化Cl-生成高氧化性物质HOCl,将NH 4+-N氧化为无害产物N2-N.结果表明,金属元素Co和Cu修饰Ti基制得阴极可以有效地催化还原模拟废水中的NO 3--N;按前驱物溶液金属元素摩尔比1∶1制得Ti基Co-Cu复合涂层催化阴极,可以将NO 3--N高效催化还原为NH 4+-N;电解体系中引入Cl-后,通过阳极作用可将NO 3--N还原生产的NH 4+-N有效地氧化为N2-N.在100 mg/L NO 3--N模拟废水中添加1 000 mg/L Cl-,设置极板间距6 mm、电流400 mA,电解2.5 h后出水NO 3--N、NO 2--N、NH 4+-N和TN分别为2.9、0.5、1.7和6.0 mg/L.  相似文献   

14.
采用溶液培养法,设置3个氮浓度20、100、200 mg·L-1和3个NH_4~+/NO_3~-比1∶0、0.5∶0.5、0∶1,研究污水氮浓度和NH_4~+/NO_3~-比对粉绿狐尾藻去氮能力和植物体氮组分的影响.结果表明,粉绿狐尾藻的生物量在第1周增长最快,其中氮浓度20 mg·L-1、100 mg·L-1时,生物量以NH_4~+/NO_3~-=1∶0处理最大;氮浓度200 mg·L-1时,以NH_4~+/NO_3~-=0.5∶0.5处理最大.粉绿狐尾藻在第1周对总氮、铵态氮和硝态氮去除速率最高,且随氮浓度升高而增加;氮浓度20 mg·L-1时,铵态氮和硝态氮的去除率无显著差异,氮浓度100 mg·L-1、200 mg·L-1时硝态氮的去除率高于铵态氮.粉绿狐尾藻氮积累量及对水体和底泥氮去除的贡献率均随氮浓度升高而增加,其氮含量和积累量均以第1周增长最快,氮浓度20 mg·L-1时氮积累贡献率以NH_4~+/NO_3~-=0∶1最大,氮浓度100 mg·L-1、200 mg·L-1时以NH_4~+/NO_3~-=0.5∶0.5最大.粉绿狐尾藻体内蛋白质、氨基态氮和硝态氮的含量均随氮浓度的升高而增加,且蛋白质氨基态氮硝态氮;NH_4~+/NO_3~-为1∶0和0.5∶0.5时蛋白质含量较高,NH_4~+/NO_3~-=1∶0时氨基态氮含量最高,NH_4~+/NO_3~-=0∶1时硝态氮含量最高.由此说明,在试验范围内,粉绿狐尾藻的去氮能力随污水氮浓度升高而提高,可以用于高氮浓度污水修复;粉绿狐尾藻喜铵态氮,但在100 mg·L-1以上的高氮浓度下以硝铵等比时生长和去除氮能力最强;粉绿狐尾藻体内氮组分受硝铵比调节,蛋白氮比例最高,铵态氮和硝态氮则分别随污水NH+4和NO-3比升高而提高.  相似文献   

15.
NO-3和NO-2作为电子受体时的反硝化除磷实时控制   总被引:1,自引:0,他引:1  
高大文  李强  梁红  王文斌  袁向娟 《环境科学》2009,30(4):1073-1078
采用SBR厌氧/缺氧运行方式,研究了NO-3和NO-2作为电子受体时的反硝化除磷效能及ORP与pH作为反硝化除磷过程控制参数的可行性.结果表明,反硝化除磷过程中COD、磷酸盐、电子受体浓度与体系pH和ORP的变化具有较强的相关性.在厌氧阶段,当释磷结束时,pH值平台的出现指示了释磷的结束;在缺氧阶段,吸磷结束后,ORP出现拐点,标志着缺氧吸磷的完成.另外,考察了2种电子受体(NO-3和NO-2)反硝化除磷的效能.在以NO-3为电子受体的反应中,在缺氧初期30 min反应中,平均摄磷速率为32.68 mg/(L·h),每吸收1 mg PO3-4-P 约消耗1.14 mg NO-3-N.在以NO-2为电子受体的反应中,在缺氧初期30 min反应中,平均摄磷速率为17.66 mg/(L·h),每吸收1 mg PO3-4-P 约消耗1.57 mg NO-2-N.综上,提出pH和ORP可以作为2种电子受体(NO-3和NO-2)反硝化除磷的实时控制参数,并且,以NO-3为电子受体系统在摄磷方面优于NO-2电子受体系统.  相似文献   

16.
HCO3-浓度对厌氧氨氧化反应器脱氮效能的影响   总被引:3,自引:1,他引:2  
李祥  黄勇  袁怡 《环境科学学报》2012,32(2):292-298
采用序批式生物膜反应器,通过氮去除速率的测定,研究了HCO3-浓度对厌氧氨氧化反应器脱氮效能的影响.结果表明,当HCO3-与NH4+-N进水浓度比值为0.21时,反应器出水pH值大幅升高,抑制了厌氧氨氧化菌活性,使得氮去除速率大幅下降.当其比值为1.13时,反应器内pH能够降低到厌氧氨氧化菌生长所需要的环境,同时,反应器的氮去除速率开始逐步升高.当过量的HCO3-进入反应器后对厌氧氨氧化反应无影响,说明HCO3-对厌氧氨氧化反应器脱氮效能具有重要的影响,对维持反应器pH值与脱氮效能十分重要.在厌氧氨氧化反应器启动过程中HCO3-与NH4+-N进水浓度最佳比值为1.13.  相似文献   

17.
Magnetic Fe0/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption–desorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating-sample magnetometer (VSM) measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that Fe0/Fe3O4/graphene had a layered structure with Fe crystals highly dispersed in the interlayers of graphene, which could enhance the mass transfer process between Fe0/Fe3O4/graphene and pollutants. Fe0/Fe3O4/graphene exhibited ferromagnetism and could be easily separated and re-dispersed for reuse in water. Typical dyes, such as Methyl Orange, Methylene Blue and Crystal Violet, could be decolorized by Fe0/Fe3O4/graphene rapidly. After 20 min, the decolorization efficiencies of methyl orange, methylene blue and crystal violet were 94.78%, 91.60% and 89.07%, respectively. The reaction mechanism of Fe0/Fe3O4/graphene with dyes mainly included adsorption and enhanced reduction by the composite. Thus, Fe0/Fe3O4/graphene prepared by the one-step reduction method has excellent performance in removal of dyes in water.  相似文献   

18.
针对复合污染体系对污染物处理效果的影响问题,以限氧裂解法制备的污泥基生物炭(SSB)为吸附剂,探索其在不同污染体系下的吸附性能变化.基于污泥基生物炭构建固定床系统,研究连续流条件下复合污染体系(Zn2+、NH4+、H2PO4-)对Pb2+在固定床动态吸附行为的影响,对比不同体系下系统运行参数的变化.结果表明:①不同复合体系均对SSB的Pb2+吸附效果产生抑制作用,其影响大小为NH4+ > Zn2+ > H2PO4-.而三元/四元复合污染体系中,H2PO4-的加入会减弱复杂体系对Pb2+的吸附抑制作用.②固定床系统中,不同复合体系对吸附穿透曲线参数的影响顺序为Pb2+-Zn2+-NH4+-H2PO4- > Pb2+-Zn2+-H2PO4- > Pb2+-Zn2+-NH4+ > Pb2+-NH4+-H2PO4-.③固定床系统动态吸附量(qd)与传质区长度(H)的变化分析均显示,复合污染体系会降低固定床吸附性能.④数据拟合结果表明,相比于Yoon-Nelson模型,Thomas模型能更好地描述Pb2+在复合体系中的动态吸附过程,但复合污染会限制动态吸附模型的应用,导致模型预测不准确.研究显示,复合污染体系会显著影响吸附剂在连续流状态下的吸附性能,有选择地处理特定污染物可以减少复合污染体系对净化效果的干扰.   相似文献   

19.
采用直接法和后嫁接法成功制备出骨架掺杂Al原子,孔道表面接枝大位阻含胺基基团的双功能介孔硅基吸附材料.采用SAXRD、TEM、FTIR、NH3-TPD等手段对合成材料进行表征,结果表明合成的双功能AN-SBA-15具有有序的二维六方介孔结构,孔道表面的Al-OH与胺基不会发生自发复合反应.对模拟废水中Cd~(2+)和Cr_2O_7~(2-)的同时吸附去除实验研究表明AN-SBA-15具备同时吸附废水中Cd~(2+)和Cr_2O_7~(2-)离子的能力,吸附最佳pH值为5.0,吸附在40 min就达到平衡.AN-SBA-15对Cd~(2+)和Cr_2O_7~(2-)离子的吸附符合Langmuir模型,属于单层吸附.由Langmuir模型拟合出的AN-SBA-15对Cd~(2+)和Cr_2O_7~(2-)离子的最大吸附容量分别为125.9 mg·g~(-1)和156.5 mg·g~(-1).此外AN-SBA-15具备良好的脱附再生能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号